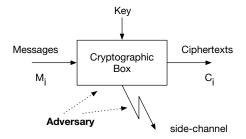
Power Attacks and Countermeasures



Information Leakage Hypothesis

- The power consumption of a chip depends on the manipulated data and the executed instruction
- Information leakage model (assumption): The consumed power is related to the Hamming weight of data (or address, op code)
- H(0) = 0

•
$$H(1) = H(2) = H(4) = H(8) = \cdots = 1$$

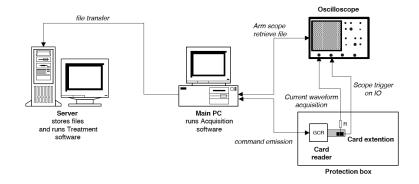
•
$$H(3) = H(5) = H(6) = H(9) = \cdots = 2$$

• $H(P_i \oplus P_{i-1})$

Power Attacks and Countermeasures

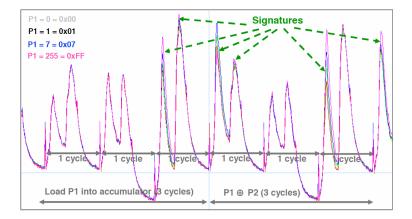
Simple Power, Differential Power, Countermeasures

Equipment Setup for Power Attacks

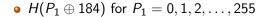


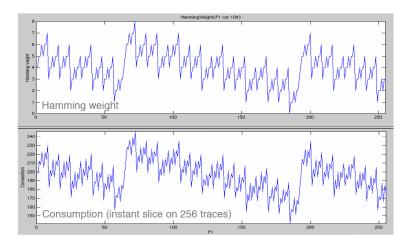
Information Leakage

• Load P_1 and XOR with $P_2 = 0$ such that $P_1 = 0, 1, 7, 255$



Information Leakage





Simple Power Analysis (SPA)

- The objective is to find the secret or private key
- Algorithm is known
- Implementation is unknown however some background is available
- Reverse engineering is required
- A single power curve may be sufficient
- A known plaintext, ciphertext pair may be required

SPA Attack on RSA Signature Operation

• The signature computation

$$s = m^d \pmod{n}$$

- n is large modulus, say 1024 bits or more
- *m* is the message
- *m* is the padded and hashed message
- s is the signature
- d is the private key such that $e \cdot d = 1 \mod \phi(n)$
- The attacker aims to obtain d

SPA Attack on RSA Signature Operation

Implementation details:

- *n*, *m*, *s*, and *d* are 128-byte buffers
- the binary method of exponentiation
- the exponent bits are scanned from MSB to LSB
- k is the bit size of d

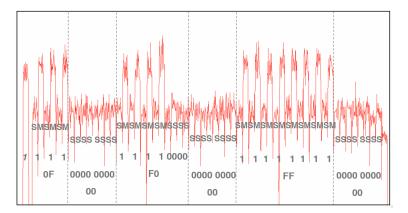
Input:
$$m, d = (d_{k-1}, \ldots, d_0)_2, n$$

Output: $s = m^d \pmod{n}$
1. $s \leftarrow 1$
2. For $i = k - 1$ downto 0
 $s \leftarrow s \cdot s \pmod{n}$
If $d_i = 1$ then $s \leftarrow s \cdot m \pmod{n}$
3. Return s

Simple Power, Differential Power, Countermeasures

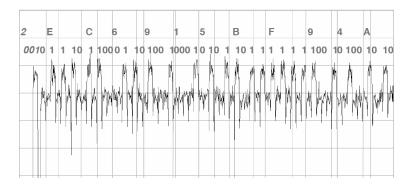
SPA Attack on RSA Signature Operation

• Test key value: 0F 00 F0 00 FF 00



SPA Attack on RSA Signature Operation

• Test key value: 2E C6 91 5B F9 4A



SPA Attack on RSA Signature Operation

- SPA uses implementation details
- SPA requires:
 - algorithm knowledge,
 - reverse engineering,
 - representation tuning, and
 - playing with implementation assumptions
- SPA depends on
 - Algorithm implementation
 - Application constraints
 - The technology (electrical properties) of the chip
 - Possible countermeasures

Countermeasures Against SPA Attack

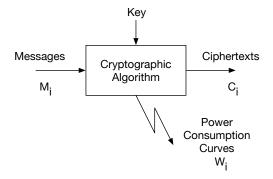
- What is a countermeasure?
- Anything that foils the attack
- Basic countermeasure: remove code branches that depend on secret or private key bits
- Advanced countermeasure:
 - Algorithm specification refinement
 - Data whitening (blinding)
 - Make changes in the instruction set
 - Electrical behavior changes (current scramblers, coprocessor usage)

Differential Power Analysis

- Also invented by Paul Kocher (1998)
- A powerful and generic power attack
- DPA uses statistics and signal processing
- DPA requires known random messages
- DPA targets a known algorithm
- Applicable to a smart card
- Big noise in crypto community
- Big fear in the smart card industry

Acquisition Procedure

• Apply the algorithm L times such that $10^3 < L < 10^5$



Selection and Prediction

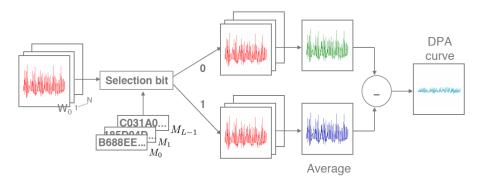
- Assume the message is processed by a known deterministic function f (transfer, permutation)
- Knowing the message, one can recompute its image through f offline

$$M_i \longrightarrow f \longrightarrow M'_i = f(M_i)$$

- Now select a single bit from M' buffer
- One can predict the true story of its variations for $i = 0, 1, \dots, L-1$
 - i Message bit
 - 0 2A5A058FC295ED 0
 - 1 17BD152B330F0A 1
 - 2 BD9D5EE99FE1F8 0

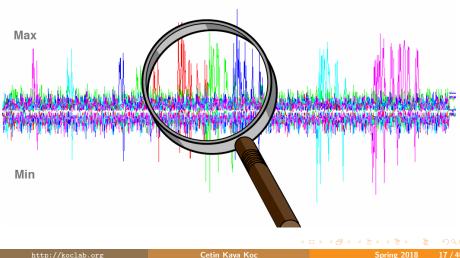
DPA Operator and Curve

DPA curve construction



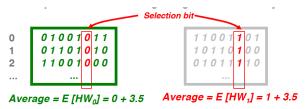
DPA Operator and Curve

DPA curves for different selection bits •



DPA Operator and Curve

• Spikes explanation: Hamming weight of the byte of the selection bits



$$\Delta = E(HW_1) - E(HW_0) = 1$$

- The peak height is proportional to \sqrt{L}
- If prediction was wrong, the selection bit would random

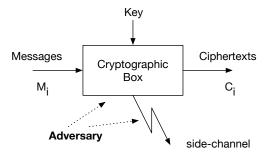
$$E(HW_1) = E(HW_0) = 4 \Rightarrow \Delta = 0$$

DPA on RSA

- The entire key (the private exponent d) is not handled together, rather bit by bit in progression
- The prediction can be done by time slices
- Prediction of the next bit requires the previous bit to be broken

RSA Countermeasures

• The binary method of exponentiation leaks information on private key



Square-and-Multiply Algorithm

• The binary method is also known as Square-and-multiply algorithm

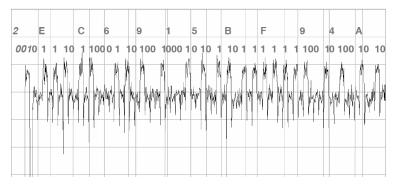
Input:
$$m, d = (d_{k-1}, \ldots, d_0)_2, n$$

Output: $s = m^d \pmod{n}$
1. $R_0 \leftarrow 1$
2. For $i = k - 1$ downto 0
 $R_0 \leftarrow R_0^2 \pmod{n}$
If $d_i = 1$ then $R_0 \leftarrow R_0 \cdot m \pmod{n}$
3. Return R_0

- It performs exponentiation left to right
- 2 Temporary variables R₀ and m
- Susceptible to SPA-type attacks

Square-and-Multiply Algorithm

• The key: 2E C6 91 5B F9 4A



Square-and-Multiply-Always Algorithm

• One way to avoid leakage is to square and multiply at every step

Input:
$$m, d = (d_{k-1}, \ldots, d_0)_2, n$$

Output: $s = m^d \pmod{n}$
1. $R_0 \leftarrow 1$; $R_1 \leftarrow 1$
2. For $i = k - 1$ downto 0
 $R_0 \leftarrow R_0^2 \pmod{n}$
 $b \leftarrow 1 - d_i$; $R_b \leftarrow R_b \cdot m \pmod{n}$
3. Return R_0

• When b = 1 (i.e., $d_i = 0$), there is a dummy multiplication

- The power trace is a regular succession of squares and multiplies
- 3 Temporary variables: R_0 , R_1 and m
- Not susceptible to SPA-type attacks
- Susceptible to Safe-Error attacks

Safe-Error Attacks

- Timely induce a fault into ALU during multiply operation at step i
- Check the output
 - If the result is incorrect (invalid signature or error notification), then the error was effective $\Rightarrow d_i = 1$
 - If the result is correct, then the multiplication was dummy (safe error) $\Rightarrow d_i = 0$
- Re-iterate the attack for another value of *i*

Montgomery Powering Ladder

Montgomery exponentiation algorithm

Input:
$$m, d = (d_{k-1}, \ldots, d_0)_2, n$$

Output: $s = m^d \pmod{n}$
1. $R_0 \leftarrow 1$; $R_1 \leftarrow m$
2. For $i = k - 1$ downto 0
 $b \leftarrow 1 - d_i$; $R_b \leftarrow R_0 \cdot R_1 \pmod{n}$
 $R_{d_i} \leftarrow R_{d_i}^2 \pmod{n}$
3. Return R_0

- This algorithm behaves regularly without dummy operations
- 2 Temporary variables: R₀ and R₁
- Not susceptible to SPA-type attacks
- Not susceptible to Safe-Error attacks

Square-and-Multiply Algorithm Example

•
$$e = 9 = (1001)_2$$

- Square-and-Multiply Algorithm
- Start with $R_0 = 1$

i	di	Step 2a	Step 2b
3	1	$R_0 = R_0^2 = 1$	$R_0 = R_0 m = m$
2	0	$R_0 = R_0^2 = m^2$	
1	0	$R_0 = R_0^2 = m^4$	
0	1	$R_0 = R_0^2 = m^8$	$R_0 = R_0 m = m$ $R_0 = R_0 m = m^9$

• Result:
$$R_0 = m^9$$

Total of 4 squarings and 2 multiplications

Square-and-Multiply-Always Algorithm Example

•
$$e = 9 = (1001)_2$$

- Square-and-Multiply-Always Algorithm
- Start with $R_0 = 1$ and $R_1 = 1$

i	di	b		Step 2b
3	1	0	$R_0 = R_0^2 = 1$	$R_0 = R_0 m = m$
2	0	1	$R_0 = R_0^2 = m^2$	$R_1 = R_1 m = m$
1	0	1	$R_0 = R_0^2 = m^4$	$R_0 = R_0 m = m$ $R_1 = R_1 m = m$ $R_1 = R_1 m = m^2$
0	1	0	$R_0 = R_0^2 = m^8$	$R_0 = R_0 m = m^9$

- Result: $R_0 = m^9$
- Total of 4 squarings and 4 multiplications

Montgomery Powering Ladder Algorithm Example

•
$$e = 9 = (1001)_2$$

- Montgomery Powering Ladder Algorithm
- Start with $R_0 = 1$ and $R_1 = m$

			Step 2a	
3	1	0	$R_0 = R_0 R_1 = m R_1 = R_0 R_1 = m^3$	$R_1 = R_1^2 = m^2$
2	0	1	$R_1 = R_0 R_1 = m^3$	$R_0 = R_0^2 = m^2$
1	0	1	$R_1 = R_0 R_1 = m^5$	$R_0 = R_0^2 = m^4$
0	1	0	$R_0 = R_0 R_1 = m^9$	$R_1 = R_1^2 = m^{10}$

• Result:
$$R_0 = m^9$$

Total of 4 squarings and 4 multiplications

Comparing Exponentiation Algorithms

	Temporary	Number of
Algorithm	Variables	Squ & Mul
Square-and-Multiply	2	k+k/2
Square-and-Multiply-Always	3	k + k
Montgomery Powering Ladder	2	k + k

- Are there better algorithms?
- Is it possible to compute m^e (mod n) in a secure way, without introducing extra multiplications?
- The Atomic Square-and-Multiply algorithms by Marc Joye require k + k/2 squarings and multiplications as in the classical (unprotected) algorithm

Atomic Square-and-Multiply Algorithm

• Atomic Square-and-Multiply Algorithm by Marc Joye

Input:
$$m, d = (d_{k-1}, \ldots, d_0)_2, n$$

Output: $s = m^d \pmod{n}$
1. $R_0 \leftarrow 1$; $R_1 \leftarrow m$; $i \leftarrow k-1$; $b \leftarrow 0$
2. While $i \ge 0$
 $R_0 \leftarrow R_0 \cdot R_b \pmod{n}$
 $b \leftarrow b \oplus d_i$; $i \leftarrow i - \overline{b}$
3. Beturn R_2

- **3.** Return R_0
- This algorithm behaves regularly without dummy operations
- 2 Temporary variables: R₀ and R₁

Atomic Square-and-Multiply Algorithm Example

• $e = 9 = (1001)_2$

• Atomic Square-and-Multiply Algorithm by Marc Joye

• Start with
$$R_0 = 1$$
, $R_1 = m$, $i = k - 1 = 3$, and $b = 0$

i	di	Ь	Step 2a	Step 2b
3	1	0	$R_0 = R_0 R_0 = 1$	$b=b\oplus d_i=1$; $i=i-ar{b}=3$
3	1	1	$R_0 = R_0 R_1 = m$	$b=b\oplus d_i=0$; $i=i-ar{b}=2$
2	0	0	$R_0 = R_0 R_0 = m^2$	$b=b\oplus d_i=0$; $i=i-ar{b}=1$
1	0	0	$R_0 = R_0 R_0 = m^4$	$b=b\oplus d_i=0$; $i=i-ar{b}=0$
0	1	0	$R_0 = R_0 R_0 = m^8$	$b=b\oplus d_i=1$; $i=i-ar{b}=0$
0	1	1	$R_0 = R_0 R_1 = m^9$	$b=b\oplus d_i=0$; $i=i-ar{b}=-1$

• Result: $R_0 = m^9$

Total of 4 squarings and 2 multiplications

Right-to-Left Binary Algorithm

• The classical Right-to-Left Binary Algorithm

Input:
$$m, d = (d_{k-1}, \ldots, d_0)_2, n$$

Output: $s = m^d \pmod{n}$
1. $R_0 \leftarrow 1$; $R_1 \leftarrow m$; $i \leftarrow 0$
2. While $i \le k-1$
If $d_i = 1$ then $R_0 \leftarrow R_0 \cdot R_1 \pmod{n}$
 $R_1 \leftarrow R_1^2 \pmod{n}$; $i \leftarrow i+1$

3. Return R_0

Right-to-Left Binary Algorithm Example

• $e = 9 = (1001)_2$

• The classical Right-to-Left Binary Algorithm

• Start with $R_0 = 1$, $R_1 = m$, and i = 0

i	di	Step 2a	Step 2b
0	1		$R_1 = R_1^2 = m^2$; $i = i + 1 = 1$
1	0		$R_1=R_1^2=m^4$; $i=i+1=2$
	0		$R_1 = R_1^2 = m^8$; $i = i + 1 = 3$
3	1	$R_0 = R_0 R_1 = m^9$	$R_1 = R_1^2 = m^{16}$; $i = i + 1 = 4$

• Result: $R_0 = m^9$

• Total of 4 squarings and 2 multiplications

Atomic Right-to-Left Binary Algorithm

The atomic Right-to-Left Binary Algorithm by Marc Joye

Input:
$$m, d = (d_{k-1}, \dots, d_0)_2, n$$

Output: $s = m^d \pmod{n}$
1. $R_0 \leftarrow 1$; $R_1 \leftarrow m$; $i \leftarrow 0$; $b \leftarrow 1$
2. While $i \le k - 1$
 $b \leftarrow b \oplus d_i$
 $R_b \leftarrow R_b R_1 \pmod{n}$; $i \leftarrow i + b$
2. Potum P

3. Return R_0

Atomic Right-to-Left Binary Algorithm Example

- $e = 9 = (1001)_2$
- Atomic Right-to-Left Binary Algorithm by Marc Joye

• Start with
$$R_0 = 1$$
, $R_1 = m$, $i = 0$, and $b = 1$

i	di	Ь	Step 2a	Step 2b
0	1	1	$b=b\oplus d_i=0$	$R_0 = R_0 R_1 = m$; $i = i + b = 0$
				$R_1 = R_1 R_1 = m^2$; $i = i + b = 1$
				$R_1 = R_1 R_1 = m^4$; $i = i + b = 2$
2	0	1	$b=b\oplus d_i=1$	$R_1 = R_1 R_1 = m^8$; $i = i + b = 3$
3	1	1	$b=b\oplus d_i=0$	$R_0 = R_0 R_1 = m^9$; $i = i + b = 3$
3	1	0	$b=b\oplus d_i=1$	$R_1 = R_1 R_1 = m^{16}$; $i = i + b = 4$

• Result: $R_0 = m^9$

• Total of 4 squarings and 2 multiplications

Preventing Side-Channel Attacks

- For SPA-type attacks: Use Montgomery ladder or Atomic algorithms of Marc Joye
- However, these algorithms are not sufficient to thwart DPA-like attacks
- To circumvent the DPA-type attacks, we use data whitening, or randomization, or blinding
- For RSA, randomization of m, d, or n is used in the computation of s = m^d (mod n)

Power Attacks and Countermeasures

Simple Power, Differential Power, Countermeasures

DPA-Type Countermeasures — Randomizing *m*

• For a random *r* compute

$$m^* = r^e \cdot m \pmod{n}$$

$$s^* = (m^*)^d \pmod{n}$$

$$s = s^* \cdot r^{-1} \pmod{n}$$

• If *e* is unknown, compute

$$m^* = r \cdot m \pmod{n}$$

$$s^* = (m^*)^d \pmod{n}$$

$$s = s^* \cdot r^{-d} \pmod{n}$$

• For a short random $r < 2^u$, compute

$$m^* = m + r \cdot n$$

$$n^* = 2^u \cdot n$$

$$s^* = (m^*)^d \pmod{n^*}$$

$$s = s^* \pmod{n}$$

DPA-Type Countermeasures — Randomizing *d*

• For a random *r* compute

$$egin{array}{rcl} d^* &=& d+r\cdot \phi(n)\ s &=& m^{d^*} \pmod{n} \end{array}$$

• If $\phi(n)$ is unknown, compute

$$d^* = d + r \cdot (e \cdot d - 1)$$

s = $m^{d^*} \pmod{n}$

• If e is unknown, for random r < d, compute

$$d^{*} = d - r$$

$$s_{1}^{*} = m^{d^{*}} \pmod{n}$$

$$s_{2}^{*} = m^{r} \pmod{n}$$

$$s = s_{1}^{*} \cdot s_{2}^{*} \pmod{n}$$

Power Attacks and Countermeasures Simple Power, Differential Power, Countermeasures

DPA-Type Countermeasures — Randomizing *n*

• For short random numbers r_1 and $r_2 > r_1$, compute

$$m^* = m + r_1 \cdot n$$

$$n^* = r_2 \cdot n$$

$$s^* = (m^*)^d \pmod{n^*}$$

$$s = s^* \pmod{n}$$

• For short random numbers r_1 and $r_2 > r_1$, compute

$$m^{*} = m + r_{1} \cdot n$$

$$n^{*} = r_{2} \cdot n$$

$$s^{*} = (m^{*})^{d} \pmod{n^{*}}$$

$$Y = (m^{*})^{d \mod \phi(r_{2})} \pmod{r_{2}}$$

$$c = (S^{*} - Y + 1) \pmod{r_{2}}$$

$$s = (s^{*})^{c} \pmod{n}$$

Randomizing n also protects against fault attacks

http://koclab.org

Final Recommendations Against Side-Channel Attacks

- Always consider side-channel attacks when implementing cryptographic functions
- Check that the countermeasures do not introduce new vulnerabilities
- Avoid decisional tests
- Randomize execution
- Combine hardware and software protections
- Always prefer cryptographic standards