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Number-Theoretic DRNGs

Number-theoretic DRNGs are also called as Deterministically Random
Bit Generators: DRBGs

Their security is based on difficulty assumptions of certain number
theoretic problems, such as factoring and discrete logarithm

Examples: RSA, Blum-Blum-Shub, Naor-Reingold bit generators

Elliptic curve DRNGs arealso in this category however they are based
on the difficulty of the ECDLP
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Number-Theoretic DRNGs

Certain security properties, such as next-bit security, are proved on
the basis these intractability assumptions

Usually only asymptotic security properties can be proved, for
example, with increasing RSA modulus

However, these algorithms are not very practical due to their low
output rate

They may still be useful for PKC platforms which are already
equipped with efficient hardware
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Cryptographically Secure DRBGs

The number-theoretic DRNGs are also called deterministic random bit
generators (DRBGs)

The general model:

DRBG

k-bit 
truly random 

seed

m-bit 
deterministically 
random output

The seed length k should be sufficiently large so that exhaustive
searching over 2k seeds is practically infeasible

An adversary must not efficiently distinguish between the output
sequences of the DRBG and truly random bit sequences
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Cryptographically Secure DRBGs

We say that the DRBG passes all polynomial-time statistical tests
if no polynomial-time algorithm can correctly distinguish between an
output sequence of the generator and a truly random sequence of the
same length with probability significantly greater than 1

2

We say that the DRBG passes the next-bit test if there is no
polynomial-time algorithm which, on input of the first s-bits of an
output sequence R can predict the (s + 1)st bit of R with probability
significantly greater than 1

2

A DRBG passes the next-bit test if and only if it passes all
polynomial-time statistical tests.

A DRBG that passes these tests are cryptographically secure

These definitions are meaningful for asymptotically large inputs only
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RSA DRBG

The output of the RSA DRBG is the sequence of the deterministically
random bits R1,R2, . . . ,Rm for a given m

Setup: Generate two secret primes p and q
Compute n = p · q and φ = (p − 1) · (q − 1)
Select a random integer e ∈ [2, φ− 1] with gcd(e, φ) = 1

Seed: Select a random integer r0 ∈ [1, n − 1]

Random Bit Generation: For i = 1, 2, . . . ,m

ri ← r ei−1 (mod n)
Ri ← the LSB of ri

Output: The sequence of bits R1,R2, . . . ,Rm

The RSA DRBG produces m bits in m steps
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RSA DRBG

The RSA DRBG is secure under the assumption that the factoring of
the modulus is difficult for the given size

The generation of a single bit Ri requires a modular exponentiation
operation with k-bit modulus, where k = log2(n)

Typically, a 1024-bit modular exponentiation takes 1ms, thus, the
RSA DRBG will work at the speed 1 Kbit/sec

Sometimes e = 3 is chosen so that a single exponentiation takes 1
modular multiplication and 1 modular squaring

This will bring the speed near 1 Mbit/sec
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Modified Versions of RSA DRBG

The efficiency can further be improved by extracting L bits per
exponentiation where L = c · log log(n) for a constant c

Provided that n is sufficiently large, this modified generator is also
cryptographically secure

However, an explicit range of values of c for which the generator
remains secure is not known
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Micali-Schnorr DRBG

The Micali-Schnorr also improves the efficiency of RSA DRBG

Setup: Generate two secret primes p and q
Compute n = p · q and φ = (p − 1) · (q − 1) with k = log2(n)
Select e with 80e ≤ k and gcd(e, φ) = 1
The word size s = k(1− 2/e)

Seed: Select a random integer r0 ∈ [1, n − 1]

Random Bit Generation: For i = 1, 2, . . . ,m

ui ← r ei−1 (mod n)
ri ← the k − s most significant bits of ui
Ri ← the s least significant bits of ui

Output: The sequence of s-bit numbers R1,R2, . . . ,Rm

The Micali-Schnorr DRBG produces sm bits in m steps
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Micali-Schnorr DRBG

The Micali-Schnorr DRBG is more efficient than RSA DRB

At each step s = k(1− 2/e) bits are generated

For example, when e = 3 and k = 1024 (satisfying 80e ≤ k), then
the Micali-Schnorr DRBG generates s bits in every exponentiation
step such that

s = k(1− 2/e) = 1024(1− 2/3) = 341

Therefore, it generates 341m bits in m steps

Moreover, by selecting e = 3, the computation of ui = r3i−1 (mod n)
requires one modular squaring with a (k − s)-bit number, and one
modular multiplication with two k-bit numbers
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Micali-Schnorr DRBG

The Micali-Schnorr DRBG is secure under the assumption that the
distribution of r e mod n for random k-bit sequences r are
indistinguishable by all polynomial-time statistical tests from the
uniform distribution of integers in the interval [0, n − 1]

This assumption is stronger the requiring that RSA problem be
intractable

Micali and Schnorr also describe a method that transforms any
cryptographically secure DRBG into into one that can be accelerated
by parallel evaluation

The method of parallelization is perfect: P parallel processors speed
the generation of deterministically random bits by a factor of P
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Blum-Blum-Shub DRBG

The Blum-Blum-Shub DRBG is also known as the BBS generator

It s secure if the integer factorization is intractable

Setup: Generate two secret primes p and q, with the property that
they are equal to 3 mod 4, and compute n = p · q
Seed: Select a random r0 ∈ [1, n − 1] such that gcd(r0, n) = 1

Random Bit Generation: For i = 1, 2, . . . ,m

ri ← r2i−1 (mod n)
Ri ← the LSB of ri

Output: The sequence of bits R1,R2, . . . ,Rm

The BBS DRBG produces m bits in m steps
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Blum-Blum-Shub DRBG

Generating each deterministically random bit Ri requires one modular
squaring with k-bit numbers, with k = log2(n)

The efficiency can further be improved by extracting L bits per
exponentiation where L = c · log log(n) for a constant c

Provided that n is sufficiently large, this modified generator is also
cryptographically secure

However, an explicit range of values of c for which the generator
remains secure is not known
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Modified Rabin DRBG

The modified Rabin DRBG differs slightly from the BBS DRBG

Setup: Generate two secret primes p and q, with the property that
they are equal to 3 mod 4, and compute n = p · q
Seed: Select a random r0 ∈ [1, n − 1] such that gcd(r0, n) = 1

Random Bit Generation: For i = 1, 2, . . . ,m

r ′i ← r2i−1 (mod n)
If r ′i < n/2, then ri = r ′i ; otherwise, ri = n − r ′i
Ri ← the LSB of ri

Output: The sequence of bits R1,R2, . . . ,Rm

The modified Rabin DRBG produces m bits in m steps
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Power Generator

The security of the Power Generator is based on the DLP in Zp

Setup: Generate the prime p and the primitive element g mod p,
such that k = log2(p)

Seed: Select a random r0 ∈ [1, p − 1]

Random Bit Generation: For i = 1, 2, . . . ,m

ri ← g ri−1 (mod p)
Ri ← the LSB of ri

Output: The sequence of bits R1,R2, . . . ,Rm

The Power Generator produces m bits in m steps
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Modified Power Generator

For efficiency purposes, the exponent r is sometimes restricted to 128
or 160 bits, since the exponentiation requires few multiplications

However, we need to make sure that the difficulty of the DLP is not
jeopardized when short exponents are used

Patel and Sundaram showed that when p = 2q + 1 and q is a prime,
any information about the k − Ω(log k) bits can be used to compute
the discrete logarithm of g r (mod p), where r has Ω(log k) bits

This gives a secure and efficient algorithm which generates k − s − 1
bits per iteration, where s = Ω(log k)

For example, when k = 1024 and s = 128, the modified Power
Generator produces 1024− 128− 1 = 895 bits per iteration
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Modified Power Generator

The modified Power Generator is due to Patel and Sundaram

Setup: Generate the prime p and the primitive element g mod p,
furthermore, p = 2q + 1 such that q is also a prime
For k = log2(p), we also have s = Ω(log k)

Seed: Select a random r0 ∈ [1, p − 1]

Random Bit Generation: For i = 1, 2, . . . ,m

ri ← g ri−1 (mod p)
Ri ← the least significant k − s bits of ri , except the LSB

Output: The sequence of (k − s − 1) bits R1,R2, . . . ,Rm

The modified Power Generator produces m(k − s − 1) bits in m steps
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Naor-Reingold DRBG

Similar to the BBS DRBG, the security of the Naor-Reingold DRBG
depends on the difficulty of factoring integers

Given two k-bit primes p and q, the 2k-bit modulus is n = p · q
Also take g which is a square mod n, that is g = x2 (mod n) for
some x ∈ [1, n − 1]

The Naor-Reingold DRBG needs three constructions:

Binary vector representations bink(u) and bin2k(u)
The mod 2 inner-product �
Integer-valued vector function f (A, b)
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Binary Vector Representation

bink(u) represents the k-dimension binary vector representation of the
integer u, for example, if k = 3 and u = 5 = (101), then
bin3(5) = (1, 0, 1)

bin2k(u) represents the 2k-dimension binary vector representation of
the integer u, for example, if k = 3 and u = 13 = (1101), then
bin6(13) = (0, 0, 1, 1, 0, 1)
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The mod 2 Inner-Product �

The mod 2 inner-product of two binary vectors v = (v1, v2, . . . , vk)
and w = (w1,w2, . . . ,wk) is defined as

v � w =
k∑

i=1

vi · wi (mod 2)

For example, assume v = (1, 1, 1) and w = (0, 1, 1)

We compute v � w as

(1, 1, 1)� (0, 1, 1) = 1 · 0 + 1 · 1 + 1 · 1 (mod 2)

= 2 (mod 2)

= 0 (mod 2)

http://koclab.org Çetin Kaya Koç Spring 2018 20 / 22

http://koclab.org


Number-Theoretic DRNGs RSA, Rabin, Blum-Blum-Shub

Integer-Valued Vector Function f (A, b)

Assume, an integer vector A of dimension 2k is given

A = (a1,0, a1,1, a2,0, a2,1, . . . , ak,0, ak,1)

Also, assume a binary vector b = (b1, b2, . . . , bk) is given

We define the integer valued function f (A, b) as

f (A, b) =
k∑

i=1

ai ,bi

For example, A = (19, 5, 23, 16, 11, 20) and b = (1, 1, 0) imply

f (A, b) = a1,1 + a2,1 + a3,0 = 5 + 16 + 11 = 32
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Naor-Reingold DRBG

Setup: Generate two k-bit secret primes p and q, and the 2k-bit
modulus n = p · q, and select a random g which is a square mod n
Select a random vector of integers A = (a1,0, a1,1, . . . , ak,0, ak,1)

Seed: Select a random binary vector r = (r1, r2, . . . , r2k)

Random Bit Generation: For i = 1, 2, . . . ,m

b ← bink(i)
u ← f (A, b)
v ← gu (mod n)
Ri ← r � bin2k(v)

Output: The sequence of bits R1,R2, . . . ,Rm

The Naor-Reingold (NR) DRBG produces m bits in m steps

If factoring the modulus n is infeasible, the output of the NR DRBG
is indistinguishable from a random sequence of bits
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