Number-Theoretic DRNGs

Number-Theoretic DRNGs

Kaya Kog

http://koclab.org

Number-Theoretic DRNGs RSA, Rabin, Blum-Blum-Shub

Number-Theoretic DRNGs

@ Number-theoretic DRNGs are also called as Deterministically Random
Bit Generators: DRBGs

o Their security is based on difficulty assumptions of certain number
theoretic problems, such as factoring and discrete logarithm

o Examples: RSA, Blum-Blum-Shub, Naor-Reingold bit generators

o Elliptic curve DRNGs arealso in this category however they are based
on the difficulty of the ECDLP

http://koclab.org Cetin Kaya Kog Spring 2018 2/22

http://koclab.org

Number-Theoretic DRNGs RSA, Rabin, Blum-Blum-Shub

Number-Theoretic DRNGs

o Certain security properties, such as next-bit security, are proved on
the basis these intractability assumptions

o Usually only asymptotic security properties can be proved, for
example, with increasing RSA modulus

o However, these algorithms are not very practical due to their low
output rate

o They may still be useful for PKC platforms which are already
equipped with efficient hardware

http://koclab.org Cetin Kaya Kog Spring 2018 3/22

http://koclab.org

Number-Theoretic DRNGs RSA, Rabin, Blum-Blum-Shub

Cryptographically Secure DRBGs

@ The number-theoretic DRNGs are also called deterministic random bit
generators (DRBGs)

o The general model:

k-bit m-bit
truly random deterministically
seed random output
—_—> DRBG EEEEEE—

o The seed length k should be sufficiently large so that exhaustive
searching over 2X seeds is practically infeasible

@ An adversary must not efficiently distinguish between the output
sequences of the DRBG and truly random bit sequences

http://koclab.org Cetin Kaya Kog Spring 2018 4/22

http://koclab.org

Number-Theoretic DRNGs RSA, Rabin, Blum-Blum-Shub

Cryptographically Secure DRBGs

We say that the DRBG passes all polynomial-time statistical tests
if no polynomial-time algorithm can correctly distinguish between an

output sequence of the generator and a truly random sequence of the
same length with probability significantly greater than %

We say that the DRBG passes the next-bit test if there is no
polynomial-time algorithm which, on input of the first s-bits of an
output sequence R can predict the (s + 1)st bit of R with probability

significantly greater than %

A DRBG passes the next-bit test if and only if it passes all
polynomial-time statistical tests.

(]

A DRBG that passes these tests are cryptographically secure

These definitions are meaningful for asymptotically large inputs only

(]

http://koclab.org Cetin Kaya Kog Spring 2018 5/22

http://koclab.org

Number-Theoretic DRNGs RSA, Rabin, Blum-Blum-Shub

RSA DRBG

o The output of the RSA DRBG is the sequence of the deterministically
random bits Ry, R», ..., Ry, for a given m

o Setup: Generate two secret primes p and g

Compute n=p-gand p=(p—1)-(qg—1)

Select a random integer e € [2, ¢ — 1] with gcd(e, ¢) =1
o Seed: Select a random integer rp € [1,n — 1]
o Random Bit Generation: For i =1,2,..., m

o rj < rf_; (mod n)
o R; + the LSB of r;

@ QOutput: The sequence of bits Ry, R, ..., Ry

o The RSA DRBG produces m bits in m steps

http://koclab.org Cetin Kaya Kog Spring 2018 6/22

http://koclab.org

Number-Theoretic DRNGs RSA, Rabin, Blum-Blum-Shub

RSA DRBG

o The RSA DRBG is secure under the assumption that the factoring of
the modulus is difficult for the given size

The generation of a single bit R; requires a modular exponentiation
operation with k-bit modulus, where k = log,(n)

Typically, a 1024-bit modular exponentiation takes 1ms, thus, the
RSA DRBG will work at the speed 1 Kbit/sec

o Sometimes e = 3 is chosen so that a single exponentiation takes 1
modular multiplication and 1 modular squaring

o This will bring the speed near 1 Mbit/sec

http://koclab.org Cetin Kaya Kog Spring 2018 7/22

http://koclab.org

Number-Theoretic DRNGs RSA, Rabin, Blum-Blum-Shub

Modified Versions of RSA DRBG

o The efficiency can further be improved by extracting L bits per
exponentiation where L = ¢ - loglog(n) for a constant ¢

o Provided that n is sufficiently large, this modified generator is also
cryptographically secure

o However, an explicit range of values of ¢ for which the generator
remains secure is not known

http://koclab.org Cetin Kaya Kog Spring 2018 8/22

http://koclab.org

Number-Theoretic DRNGs RSA, Rabin, Blum-Blum-Shub

Micali-Schnorr DRBG

o The Micali-Schnorr also improves the efficiency of RSA DRBG

o Setup: Generate two secret primes p and g
Compute n=p-qgand ¢ =(p—1)-(q— 1) with k = log,(n)
Select e with 80e < k and gcd(e, ¢) =1
The word size s = k(1 —2/e)
Seed: Select a random integer ry € [1,n — 1]
Random Bit Generation: For i =1,2,.... m
o uj < rf_y (mod n)
o rj < the k — s most significant bits of u;
o R; < the s least significant bits of u;

Output: The sequence of s-bit numbers Ry, R, ..., Ry,

o The Micali-Schnorr DRBG produces sm bits in m steps

http://koclab.org Cetin Kaya Kog Spring 2018 9/22

http://koclab.org

Number-Theoretic DRNGs RSA, Rabin, Blum-Blum-Shub

Micali-Schnorr DRBG

The Micali-Schnorr DRBG is more efficient than RSA DRB
At each step s = k(1 — 2/e) bits are generated

For example, when e = 3 and k = 1024 (satisfying 80e < k), then
the Micali-Schnorr DRBG generates s bits in every exponentiation
step such that

s =k(1—2/e) =1024(1 — 2/3) = 341

Therefore, it generates 341m bits in m steps

Moreover, by selecting e = 3, the computation of u; = r3 | (mod n)
requires one modular squaring with a (k — s)-bit number, and one
modular multiplication with two k-bit numbers

http://koclab.org Cetin Kaya Kog Spring 2018 10/22

http://koclab.org

Number-Theoretic DRNGs RSA, Rabin, Blum-Blum-Shub

Micali-Schnorr DRBG

o The Micali-Schnorr DRBG is secure under the assumption that the
distribution of r¢ mod n for random k-bit sequences r are
indistinguishable by all polynomial-time statistical tests from the
uniform distribution of integers in the interval [0, n — 1]

o This assumption is stronger the requiring that RSA problem be
intractable

@ Micali and Schnorr also describe a method that transforms any
cryptographically secure DRBG into into one that can be accelerated
by parallel evaluation

@ The method of parallelization is perfect: P parallel processors speed
the generation of deterministically random bits by a factor of P

http://koclab.org Cetin Kaya Kog Spring 2018 11/22

http://koclab.org

Number-Theoretic DRNGs RSA, Rabin, Blum-Blum-Shub

Blum-Blum-Shub DRBG

The Blum-Blum-Shub DRBG is also known as the BBS generator

It s secure if the integer factorization is intractable

Setup: Generate two secret primes p and g, with the property that
they are equal to 3 mod 4, and compute n=p-q

Seed: Select a random ry € [1, n — 1] such that ged(r, n) =1
Random Bit Generation: For i =1,2,....m

o ri < r?, (mod n)

o R; + the LSB of r;

@ Output: The sequence of bits Ry, R>,..., R

o The BBS DRBG produces m bits in m steps

http://koclab.org Cetin Kaya Kog Spring 2018 12/22

http://koclab.org

Number-Theoretic DRNGs RSA, Rabin, Blum-Blum-Shub

Blum-Blum-Shub DRBG

Generating each deterministically random bit R; requires one modular
squaring with k-bit numbers, with k = log,(n)

o The efficiency can further be improved by extracting L bits per
exponentiation where L = ¢ - loglog(n) for a constant ¢

o Provided that n is sufficiently large, this modified generator is also
cryptographically secure

o However, an explicit range of values of ¢ for which the generator
remains secure is not known

http://koclab.org Cetin Kaya Kog Spring 2018 13/22

http://koclab.org

Number-Theoretic DRNGs RSA, Rabin, Blum-Blum-Shub

Modified Rabin DRBG

o The modified Rabin DRBG differs slightly from the BBS DRBG

o Setup: Generate two secret primes p and g, with the property that
they are equal to 3 mod 4, and compute n=p- g

Seed: Select a random ry € [1,n — 1] such that ged(rp, n) =1
Random Bit Generation: For i =1,2,.... m

o rl < r?, (mod n)

o If r/ < n/2, then r; = r]; otherwise, r; = n—r/

o R; + the LSB of r;

Output: The sequence of bits Ry, R>, ..., Rn

The modified Rabin DRBG produces m bits in m steps

http://koclab.org Cetin Kaya Kog Spring 2018 14 /22

http://koclab.org

Number-Theoretic DRNGs RSA, Rabin, Blum-Blum-Shub

Power Generator

o The security of the Power Generator is based on the DLP in Z,

o Setup: Generate the prime p and the primitive element g mod p,
such that k = log,(p)

Seed: Select a random ry € [1,p — 1]
Random Bit Generation: For i =1,2,.... m
o ri + g (mod p)
o R; < the LSB of r;
Output: The sequence of bits Ry, R>, ..., Rn

The Power Generator produces m bits in m steps

http://koclab.org Cetin Kaya Kog Spring 2018 15 /22

http://koclab.org

Number-Theoretic DRNGs RSA, Rabin, Blum-Blum-Shub

Modified Power Generator

o For efficiency purposes, the exponent r is sometimes restricted to 128
or 160 bits, since the exponentiation requires few multiplications

o However, we need to make sure that the difficulty of the DLP is not
jeopardized when short exponents are used

o Patel and Sundaram showed that when p = 2g + 1 and q is a prime,
any information about the k — Q(log k) bits can be used to compute
the discrete logarithm of g” (mod p), where r has Q(log k) bits

o This gives a secure and efficient algorithm which generates k —s — 1
bits per iteration, where s = Q(log k)

o For example, when k = 1024 and s = 128, the modified Power
Generator produces 1024 — 128 — 1 = 895 bits per iteration

http://koclab.org Cetin Kaya Kog Spring 2018 16 /22

http://koclab.org

Number-Theoretic DRNGs RSA, Rabin, Blum-Blum-Shub

Modified Power Generator

o The modified Power Generator is due to Patel and Sundaram

o Setup: Generate the prime p and the primitive element g mod p,
furthermore, p = 2q + 1 such that g is also a prime
For k = log,(p), we also have s = Q(log k)

Seed: Select a random ry € [1,p — 1]
Random Bit Generation: For i =1,2,.... m

o rj < g~ (mod p)

o R; + the least significant k — s bits of r;, except the LSB
Output: The sequence of (k —s — 1) bits R, Rz, ..., Ry,

The modified Power Generator produces m(k — s — 1) bits in m steps

http://koclab.org Cetin Kaya Kog Spring 2018 17 /22

http://koclab.org

Number-Theoretic DRNGs RSA, Rabin, Blum-Blum-Shub

Naor-Reingold DRBG

Similar to the BBS DRBG, the security of the Naor-Reingold DRBG
depends on the difficulty of factoring integers

Given two k-bit primes p and g, the 2k-bit modulusis n=p- g
2

Also take g which is a square mod n, that is g = x= (mod n) for

some x € [1,n—1]

The Naor-Reingold DRBG needs three constructions:

o Binary vector representations bing(u) and bing,(u)
o The mod 2 inner-product ®
o Integer-valued vector function f(A, b)

http://koclab.org Cetin Kaya Kog Spring 2018 18 /22

http://koclab.org

Number-Theoretic DRNGs RSA, Rabin, Blum-Blum-Shub

Binary Vector Representation

@ bink(u) represents the k-dimension binary vector representation of the
integer u, for example, if k =3 and u =5 = (101), then
bin3(5) = (1,0,1)

@ bingk(u) represents the 2k-dimension binary vector representation of
the integer u, for example, if k =3 and v =13 = (1101), then
bing(13) = (0,0,1,1,0,1)

http://koclab.org Cetin Kaya Kog Spring 2018 19/22

http://koclab.org

Number-Theoretic DRNGs RSA, Rabin, Blum-Blum-Shub

The mod 2 Inner-Product ©®

@ The mod 2 inner-product of two binary vectors v = (v1,va, ..., vk)
and w = (wy, wy, ..., wy) is defined as

k
V®W=ZV,"W,' (mod 2)
i=1

o For example, assume v =(1,1,1) and w = (0,1, 1)

o We compute v ©® w as

(1,1,1)®(0,1,1) = 1-041-1+1-1 (mod?2)
= 2 (mod 2)
= 0 (mod?2)

http://koclab.org Cetin Kaya Kog Spring 2018 20/22

http://koclab.org

Number-Theoretic DRNGs RSA, Rabin, Blum-Blum-Shub

Integer-Valued Vector Function f(A, b)

o Assume, an integer vector A of dimension 2k is given

A= (a1,0,a1,1,22,0,321,---,3k0, k1)

o Also, assume a binary vector b = (by, by, ..., bi) is given
o We define the integer valued function f(A, b) as

k
FA D)= aip
i=1

o For example, A = (19,5,23,16,11,20) and b = (1,1,0) imply

f(A, b) =aij1+ax+asp= 5416+ 11 =32

http://koclab.org Cetin Kaya Kog Spring 2018 21/22

http://koclab.org

Number-Theoretic DRNGs RSA, Rabin, Blum-Blum-Shub

Naor-Reingold DRBG

o Setup: Generate two k-bit secret primes p and g, and the 2k-bit
modulus n = p - g, and select a random g which is a square mod n
Select a random vector of integers A = (a1,0,31,1,- .-, 3,0, 3k,1)

o Seed: Select a random binary vector r = (ri, ra, ..., k)

o Random Bit Generation: For i =1,2,..., m

b + bin(/)

u <+ f(A,b)

v < g (mod n)

R,‘ —r® bingk(v)

Output: The sequence of bits Ry, Ro, ..., Rm

The Naor-Reingold (NR) DRBG produces m bits in m steps

If factoring the modulus n is infeasible, the output of the NR DRBG
is indistinguishable from a random sequence of bits

http://koclab.org Cetin Kaya Kog Spring 2018 22/22

http://koclab.org

