Cryptographic Engineering Spring Term 2018

Homework Assignment 01:

- 1. Illustrate the computation of gcd(5270760, 50820) using factorization.
- 2. Illustrate the computation of gcd(651, 112) using the EA.
- 3. Illustrate the computation of $25^{-1} \pmod{128}$ using the EEA.
- 4. Compute $\phi(500)$.
- 5. Compute $25^{-1} \pmod{101}$ using Fermat's theorem.
- 6. Compute $23^{-1} \pmod{100}$ using Euler's theorem.
- 7. Compute $a+b \pmod{n}$, $a-b \pmod{n}$, $a \cdot b \pmod{n}$ for a = 10, b = 7, n = 16 in least positive and least magnitude representation.
- 8. Illustrate the computation of $m^{173} \pmod{n}$ using the binary method of modular exponentiation.
- 9. Given the moduli set (7, 11, 13, 16) and the remainders (1, 2, 3, 4) of the number x, compute x using the CRA.
- 10. Given the moduli set (7, 11, 13, 16) and the remainders (4, 3, 2, 1) of the number x, compute x using the MRC.
- 11. List all primitive elements \mathcal{Z}_{101}^* .
- 12. List the elements of \mathcal{Z}_{101}^* which are of order 10.
- 13. Compute a+b and, $a \cdot b$ in GF(2⁷) using the irreducible $p(\alpha) = \alpha^7 + \alpha + 1$ such that $a = \alpha^5 + \alpha^3 + \alpha$ and $b = \alpha^6 + \alpha^4 + 1$.
- 14. The AES algorithm uses the field $GF(2^8)$ with the irreducible polynomial $p(\alpha) = \alpha^8 + \alpha^4 + \alpha^3 + \alpha + 1$. Compute $a \cdot b$ in $GF(2^8)$ given $a = \alpha^7 + \alpha$ and $b = \alpha^7 + 1$
- 15. The MixedColumn sub-round of the AES uses the matrix vector computation

α	$\alpha + 1$	1	1	s_1	
1	α	$\alpha + 1$	1	s_2	
1	1	α	$\alpha + 1$	s_3	
$\alpha + 1$	1	1	α	s_4	

for a given column vector of the state $[s_1, s_2, s_3, s_4]^T$. Perform this computation $GF(2^8)$ for

$$\begin{bmatrix} s_1\\s_2\\s_3\\s_4 \end{bmatrix} == \begin{bmatrix} \alpha^6 + \alpha\\\alpha^5 + \alpha^4\\\alpha^7 + \alpha^3\\\alpha^4 + \alpha^3 \end{bmatrix}$$

16. The SubByte table the AES involves the inversion of an element of in $GF(2^8)$. Compute a^{-1} for $a = \alpha^7 + \alpha^3$.