
1

A Faster Hardware Implementation of RSA
Algorithm
Ajay C Shantilal

Department of Electrical & Computer Engineering,
Oregon State University, Corvallis, Oregon 97331 -USA.

E-mail: ajay@ece.orst.edu

Abstract—The performance of most crypto systems is pri-
marily determined by an efficient implementation of arith-
metic operations. When implementing public key cryptog-
raphy such as RSA the primary requirements are high speed
arithmetic computation, small size and low power consump-
tion and resistance to side channel attacks. In this paper
an efficient way to explore fast modular operation has been
explored, using redundant digit sets with higher radices and
making modifications to Montgomery’s Algorithm in order
to explore deep pipelining at architecture level which im-
proves the throughput and latency of the system. This pa-
per presents a solution to the problems of existing meth-
ods, proposes an actual implementation of the solution and
demonstrates the benefit of the proposed approach. I sus-
pect my algorithm to be nearly optimal and challenge the
cryptographic community for better results.

Keywords: RSA, modular exponentiation, modulo multipli-
cation, bit serial multiplier architecture, pipelining, redun-
dant digit set, RNS, Chinese remainder theorem power anal-
ysis, timing attacks.

I. Introduction.

It is widely recognized that security issues will play a cru-
cial role in the majority of future computer and communi-
cation systems. Central tools for achieving system security
are cryptographic algorithms. For performance as well as
for physical security reasons it is often required to realize
cryptographic algorithms in hardware. Computational per-
formance of large integers is important in implementation
of public key cryptography. From mathematical viewpoint
the cryptographic algorithms have a common character-
istics: they perform long integer modular exponentiation.
Hence to improve the performance of cryptographic system
it is required to fasten the modular exponentiation. Many
papers have been proposed in this direction but they are
a trade off between area and power consumption and are
vulnerable to side channel attacks.

This paper proposes a scheme, which takes into consid-
eration area, and possible side channel attacks while im-
proving the performance of modular exponentiation signifi-
cantly. In this paper I implemented RSA algorithm suitable
for DSP and can be extended to any system. For Modu-
lar multiplication I devised a fast implementation method
for Montgomery multiplication, which explores deep and
parallel pipelining. Montgomery multiplication is based on
Redundant Number System (RNS). In RNS an integer is

Author is a graduate student at the Department of Electrical &
Computer Engineering, Oregon State University, Corvallis, Oregon
97331. E-mail: ajay@ece.orst.edu

represented by set of its residues in terms of base elements
of RNS, and thus arithmetic operations can be indepen-
dently carried out for every base element. On the other
hand Montgomery multiplication is a method for perform-
ing modular multiplication by substituting additions and
multiplication for division. Therefore the combination of
RNS and Montgomery is expected to be well suited for par-
allel processing of modular exponentiation [1]. I also used
Chinese Remainder theorem (CRT) to improve the perfor-
mance. Further within each processing unit high radix digit
representation (radix - 16) is used to reduce the number of
clock cycles. I extend double modular exponentiation to re-
sist side channel attacks that extracts secret exponent by
analyzing the target power consumption and timing anal-
ysis at negligible overhead.

This contribution is structured as follows. In Section 2,
I summarize some of the previous work on modular ex-
ponentiation. Section 3 describes algorithms for modular
exponentiation and architecture to implement the same.
Section 4 of this contribution shows the timing and area
results obtained and makes a comparison of our results to
previous work. In section 5 conclusions are drawn based on
performance, area, data integrity and side channel attacks.

II. Previous Work

In the following I will summarize relevant previous work
in field of modular multiplication. Most presented ap-
proaches are based on the algorithm proposed by Peter
Montgomery [2] either in conjunction with redundant num-
ber system or systolic array architecture. In [3] right to left
binary exponentiation algorithm was used for double mod-
ular exponentiation. This scheme has a low power con-
sumption and is resistant to side channel attacks but do
not have any gain on the performance. In [4] the author fo-
cuses on the security gains related to power attacks against
smart cards but have short coming that it can not be im-
plemented if the size of the modulus is smaller than the
size of the multiplier and we have to pre compute 22pt mod
N. In [5] the author implements and combines a high radix
version of Montgomerys algorithm with a novel systolic ar-
ray architecture and concludes that the performance are
better than previously reported implementations on radix
2. It also had a significant gain in the area but is vulnerable
to timing and power attacks. In reference [6] the authors
have implemented a method for Montgomery’s multiplica-
tion which is useful for pipeline processing and have devised

2

an improved computation for the number of multiplications
and additions. They do not give any details about the area
and the power consumption with their method. In [7] this
the author implements Montgomery multiplication in sys-
tolic array method. He also gives solutions to bottlenecks
arising in hardware for implementing RSA for classical al-
gorithm but however suffers from broadcasting problems
with classical algorithm and scheduling complications with
Montgomery’s Algorithm. In [8] the author explores Bar-
rets Modular Reduction Method instead of Montgomery to
avoid the division in Modular multiplication. It has a high
degree of parallelism in the Multiplier code which is the
most significant characteristic of the proposed scheme. It
also explores Chinese Remainder theorem to improve the
performance at the cost of extra area and higher power
consumption.

III. RNS Based High Radix MM

A. Residue Number System

In RNS an integer ’x’ is represented by
< x >a= (x[a1], x[a2], . . . , x[an])
where x[ai] = xmodai. The set a = a1, a2, . . . , an is

called a base and the number of elements n in it is base size,
where ai’s are mutually prime. Due to Chinese remainder
theorem any ’x’ which satisfies 0 ≤ x ≤ A(A = Πn

i=1ai)
has one and only one RNS representation.

Addition and multiplication modulo ’a’ can be imple-
mented in parallel in linear space (lg(n)channels) and
[performed in one single step without any carry propaga-
tion as follows.

< x± y >a= ((x[a]1 ± y[a]1)[a1], . . . , (x[a]n ± y[a]n)[an])
< x · y >a= ((x[a]1 · y[a]1)[a1], . . . , (x[a]n · y[a]n)[an])
The combination of RNS and MM is expected to realize

fast parallel processing effectively.
Montgomery Multiplication Algorithm MM is known to

be an efficient method for implementing modular exponen-
tiation in public key cryptography. The Montgomery al-
gorithm computes MonPro(x, y) = x.y.r−1 mod n. given
x, y < n and r such that GCD(n,r) = 1. Even though the
algorithm works for any r, which is relatively prime to n it
is more useful when r is taken to be a power of 2, which
is intrinsically fast operation on general purpose computer
example signal processors. The version shown below taken
from [6].

Function: Montgomery Multiplication Input : x, y , N,
r
Output: w = x · y · r−1

1: t = x · y
2: m = (t(mod r))N’ mod r
3: t = t + m · n
4: w = w/r

B. RNS Montgomery Multiplication with higher radices;

Since the speed for radix -2 multipliers is approaching
limits, the use of higher radices is proposed. High radix op-

erations require fewer clock cycles, however the cycle time
and area increases but effectively efficiency improves sig-
nificantly. Let 2(l) be the radix. The key operation in
computing w = x.y (mod n) is the computation of

w = 2l · w + x, yi −Q · n
Where w is the partial product and yi is the ith digit of

y in radix 2l. The value Q determines the number of times
the modulus N is subtracted from the partial product w in
order to reduce it modulo n. we compute Q by dividing
the current value of partial product w by n, which is then
multiplied by n and subtracted from partial product dur-
ing the next cycle. This implementation is illustrated in
following figure 1.

Figure 1: High Radix Modular Multiplication

The partial product generation is much more complex
for higher radices. However the generation of high radix
partial product does not greatly increase cycle time since
this computation can be easily pipelined. The most com-
plicated step is the reduction step, which necessitates more
complex routing increasing chip area. In /cite[1] has shown
an effective modular reduction technique which is being
used here.

The above mentioned MM procedure is rewritten using
RNS with higher radix as shown below.

Function: RNS MM
Input : < x >(aub), < y >(aub), (x, y < 2N)
Output: < w >(aub)(w ≡ x · y · (B−1)modN, w < 2N)

1a: < t >a=< x · y >a

1b: < t >b=< x · y >b

2: < m >b=< t ·N ′ >b

3: < m >a= BT (< m >b, 0)
4: < u >a=< tN >a

5: < v >a=< t + u >a

6: < w >a=< vB−1 >a

7: < w >b= BT (< w >a, 0.5)

Here BT is nothing but base transformation which can be
implemented using base transformation algorithm in par-
allel as shown in [1].

3

An exponentiation algorithm based on radix - 16 is re-
alized by the RNS Montgomery multiplication as shown in
the algorithm below. It is assumed that an input variable
has been transformed previously into x’ = xB mod N, be-
cause of the esssential feature of MM in which Montgomery
constant B is introduced [1] . From this assumption, the
output y = xdBmodN is realized.

Function: Modular Exponentiation using RNS MM
Input : < x >(aub), d = (dk, . . . , d1)(24)
Output: < y >(aub), s.t.y = xdB(− (d− 1))modN

1: < x0
N >=< BN >

2: < x1
N >=< x >

3: < xi+1
N >= MM(< xi

N >,< x >, N)
4: < y >=< xdk

N >
5: Fori = k − 1, . . . , 1
6: Forj = 1, · · · , 4
7: < y >= MM(< y >, < y >, N)
8: Nextj
9: < y >= MM(< y >, < xdi

N >,N)
10: Next i

The number of clocks to perform the RNS MM using
high radix are ln(n2/ul) where u is the number of paral-
lel processing units and l is the radix power of operation.
The performance of RNS modular exponentiation is esti-
mated by ln(n3/ul). The chip size depends upon number
of parallel processing unit, which is determined by u.

C. Double modular exponentiation to resist side channel
attacks:

Any circuit to be resistant to power analysis attacks
must operate with constant current variation and calcula-
tion time regardless of input values. I use a ”compensating
calculation” forcing the operation to always perform both
a modular square circuit and a modular multiply. Thus
every circuit is constantly operated even if the exponent
is ”0”. By adjusting the calculation time to give double
time for ”0” bits the circuit can also be made resistant
to timing attacks. But while doing this the area increases
considerably shown below is a technique that can overcome
this problem by combining two separate modular multiply
units into one for shared use. figure[2] illustrates how this
can be achieved.

Figure 2:Compensating Circuit Configuration

In the new circuit configuration, the shared modular
multiply unit in the center shown above cannot be used
for double modular exponentiation calculation when both
exponents are equal to ”1”. In this case, one of the calcu-
lations may have to be delayed until the modular multiply
unit becomes idle. Proper scheduling and control can re-
duce this delay. Also we can extend on-fly canonical booth
recoding to have more number of ”0” in the operand.

IV. Timing and Area Results

In order to prove my algorithm to be the most efficient
way ever possible I implemented the above algorithm in
VHDL and various timing analysis were carried. Once the
design was developed in VHDL, booloean logic and vari-
ous timing errors were verified by simulating the gate level
description with edifout VHDL analyzer. The next step
involved the synthesis of the VHDL code with elsyn and
obtained the area and delay analysis for ideal condition
also obtained the actual gate level delay in sdf format then
the VHDL was recompiled using the above obtained actual
gate report with routing delays and analyzed for timing
and gate delays in XILINX format. Once all the possible
delays were incorporated the final design was used to ob-
tained the results shown below using Xilinx timing analyzer
and finally verified with an actual chip.

Approach used RadixUsed CLB′s t(ms)
RNS based MM 2 5450 0.46
RNS based MM 16 6286 0.12

Double Exponentiation 2 5950 0.56
Double Exponentiation 16 6686 0.14

Table 1:Application to RSA : Encryption.

I compared my fastest RSA 1024 bit design of table 1 to the
fastest hardware solutions found in the literature [5]. The
proposed method has an encryption time of 0.14 ms which
is about 35% faster than the 1024 hardware implementa-
tion (.22 ms with radix 16 and .75 ms with radix 2) on a
150 MHz Alpha [5]. I did not find any other system faster
than my proposed scheme and suspect my algorithm to be
the most optimal one and challenge the cryptographic com-
munity for better results. My system has a slightly greater
area and power consumption, approximately 8% but is re-
sistant to power attacks and timing attacks which I feel are
the most important features for any cryptosystem, which
do not exist in the system with which I make my com-
parison. Systems which posses this feature are far lagging
in comparison to performance with my algorithm. The
proposed algorithm is about 20 times faster to any other
algorithm that has resistance to side channel attacks.

V. Conclusions

In this paper, I have introduced a new efficient technique
for multiplying and exponentiating of arithmetic operation
using Residue number system with high radix along with
Montgomery multiplication. Also double exponentiation

4

method was extended in order to make the methodology
resistant to side channel attacks. We prove our case by
implementing our algorithm and verifying it with the best
known algorithm and found that it was 35% faster. If mod-
ular multiplication is implemented on processors which do
not support arithmetic on full data width, I believe that
an RNS implementation is preferable. We can exploit more
parallelism using more processors but care has to be taken
about the associated area with it.

References

[1] A. Shimbo H. Nozaki, M. Motoyama and S. Kawamura, “Im-
plementation of rsa algorithm based on rns montgomery multi-
plication,” in Cryptographic Hardware and Embedded Systems -
CHES 2001, C. Paar (Eds.) .K. Ko, D. Naccache, Ed. 2001, pp.
364–376, Springer, Berlin, Germany.

[2] P. Montgomery, “Modular multiplication without trial division,”
in Mathematics of Computations, Volume - 44, 1985, pp. 519–
521.

[3] Jun Anzai Takehiko Kato, Satoru Ito and Natsume Matsuzaki, “A
design for modular exponentiation coprocessor in mobile telecom-
munication terminals,” in Cryptographic Hardware and Embed-
ded Systems - CHES 2000, C. Paar (Eds.) .K. Ko, Ed. 2000, pp.
216–228, Springer, Berlin, Germany.

[4] Gal Hachez and Jean-Jacques Quisquater, “Montgomery ex-
ponentiation with no final subtractions: Improved results,” in
Cryptographic Hardware and Embedded Systems - CHES 2000,
C. Paar (Eds.) .K. Ko, Ed. 2000, pp. 293–301, Springer, Berlin,
Germany.

[5] Christof Paar Thomas Blum, “High radix montgomery modular
exponentiation on reconfigurable hardware,” in Cryptography and
Information Security Research Laboratoty - CRIS 2001, 2001, pp.
759–764.

[6] Naoya Torii Syouji Temma Kouichi Itoh, Masahiko Takenaka and
Yasushi Kurihara, “Fast implementation of public-key cryptog-
raphy on a dsp tms320c6201,” in Cryptographic Hardware and
Embedded Systems - CHES 1999, C. Paar (Eds.) .K. Ko, Ed.
1999, pp. 61–72, Springer, Berlin, Germany.

[7] Colin D. Walter, “Montgomery’s multiplication technique: How
to make it smaller and faster,” in Cryptographic Hardware and
Embedded Systems - CHES 1999, C. Paar (Eds.) .K. Ko, Ed.
1999, pp. 80–93, Springer, Berlin, Germany.

[8] Johann Groschdl, “High-speed rsa hardware based on barret’s
modular reduction method,” in Cryptographic Hardware and Em-
bedded Systems - CHES 2000, C. Paar (Eds.) .K. Ko, Ed. 2000,
pp. 191–203, Springer, Berlin, Germany.

