
Analysis of Low-Power Elliptic Curve
Cryptography Using Scaled Modular Arithmetic

Ahmed Al Faresi
Electrical and Computer Engineering

Oregon State University
Corvallis, Oregon 97331–4501
Email: alfaresi@engr.orst.edu

Abstract— We present a custom class of primes using modular
scaling that facilitate efficient finite filed operations. In addition
we introduce an inversion algorithm that utilizes such special
modulus. This inversion algorithm is an improvement on the
available Euclidean algorithm, incorporating the use of the scaled
modulus and proving to be of high performance and efficiency
for hardware implementation. Using both the scaled modulus
and the inversion algorithm we define a cryptographic processor
for Elliptic curves Cryptography (ECC). This processor offers a
superior performance in terms of area, power and speed.

I. I NTRODUCTION

The applications of Modular arithmetic in cryptography are
endless. Many cryptographic schemes like the RSA algorithm
[1], Diffe-helman key exchange algorithm [2], the Digital
signature schemes [3] and elliptic curve cryptography [4],
utilize modular arithmetic. The implementation of certain
schemes requires the arithmetic operations modulo the product
of two large primes i.e. n=pq. Others schemes like Diffe-
Helman and El-Gamal are based on arithmetic of integers
modulo a large prime p. In Elliptic Curve Digital Signature
Algorithm (ECDSA) the arithmetic operations are modular
operations with respect to a large prime modulusGF (p)
or polynomial arithmetic modulo a high degree irreducible
polynomial defined over theGF (2k). The key for efficient
implementation of ECDSA overGF = 2k is to choose irre-
ducible polynomials that allow for efficient modular reduction.
By doing so we reduce the complexity, power consumption
and low speed of the implementation process. To date, the
best irreducible polynomial obtained is either a trinomial
or an equally-space polynomial (ESP). Unfortunately, there
exist only a few irreducible ESPs in the range of interst
of most applications, e.g., error-correcting code, computer
algebra, and elliptic curve cryptography [5]. Therefore less
efficient trinomials or pentanomials are used instead. However
such less efficient polynomials result in extra additons and
alignment adjustment rendering the implementation to be poor.
A solution to such a problem is to use low hamming weight
polynomials with a special modulus. To achieve such desired
modulai equivalent to the low hamming weight we introduce
a modulai of Mersenne form using modulus scaling. This in
turn allowed for the development of an inversion algorithm
that utilized the modulai to push the margin and create very
efficient inversion hardware resulting in a very fast, area-

efficient, low power scalable hardware implementation.

II. M ATHEMATICAL BACKGROUND

Finite filed defined over theGF = 2k. Arithmetic is
fundamental to the implementation of a number of modern
cryptographic systems and schemes of certain cryptographic
systems. Most arithmetic operations, such as exponentiation,
inversion, and division operations, can be carried out using
just a modular multiplier [6]. Simple modular multiplication
is implemented by first computing the product of the two
operands,c = a.b, the result is then reduced using the
modulus x = c (mod p). Since reduction would mean a
division operation, and that is to be avoided, certain modulai
have been proposed to alleviate such a problem. Of such
modulai is a Mersenne Prime given in the form2kc with
log2c < [k/2], wherek is an integer for which0 < |k| <
2[m/2] If c = 1, then p is a Mersenne Prime andk must
necessarily be a prime. If n is positive integer less thanp2,
then can be writtenn = u.22k = a.2k + b, Whereu = 0
or 1 anda and b are nonnegative integers less than2m then
n = u.c2 + ac+ b (mod p). Repeating this substitution a few
times will yield n modulo p. This method requires a small
number of additions and subtractions rather than the usual
division step. Unfortunately Mersenne primes and primes of
the from2k +1 are scarce. For degrees up to 1000 no primes
of the form 2k + 1 and only two Mersenne primes2521 − 1
and2607 − 1 exist.[8]. However for ECDSA such primes are
too large and are unsuitable. Therefore an alternative solution
is to use primes of the form2k − 3.

III. M ODULUS SCALING

Modular scaling plays a vital role in cryptographic
implementations since it allows for a key bit increase if need
be without having to change or reconfigure the cryptographic
design the earliest works on modular scalability where
introduced by Walter. The basic idea is to obtain a modulus
scalable in the higher order bits. This is achieved by scaling
a prime modulus to obtain a new onem = ps where p is
the original modulus scaled tom. Now for a given integera
reduced by the new modulusm will give a result congruent
to a:

(a (mod m)) (mod p) ≡ a (mod p) When a
scaled modulus is used, residues will be in the
range[m−1, 0] = [s.p−1, 0]. The number is not fully reduced
and essentially we are using a redundant representation where
an integer is represented using[log2s] more bits than
necessary. Therefore it will be necessarily that the final result
be reduced by p to obtain a fully reduced representation. Now
in order to scale a modulus and obtain one of low-hamming
wait we need to find a small suitable constant to scale the
prime p. Its worth noting that if a random pattern appears in
a modulus than a low hamming weight optimization will not
be possible. Two heuristics are presented that form a basis
for efficient on the fly scaling[8]:

Heuristic 1 if the baseB representation of an integer
contains a series of repeating digits, scaling the integer with
the largest possible digits, produces a string of repeatingzero
digits in the scaled and recoded integer.

Assume that baseB representation contains a repeating
valueD. Then we use the scaling factors = B−1 to compute
m. When a string of repeatingD-digits is multiplied with the
scaling factor, and written in baseB we get:

(DDDD....DDD)B .(B − 1) = (DDDD...DDD0)B −
(DDDD....DDD)B = (D000...000D̄)B.

The bar over the least significant digit denotes a negative
valued digit.

Heuristic 2 Given a modulus containing repeatingD-
digits in baseB representation, ifB-1 is divisible by the
repeating digit, then the modulus can be efficiently scaled by
the factorB−1

D .

As earlier the heuristic is verfied by multiplying a string of
repeating digits with the scaling factor and then be recoding.
[savas].
(DDDD....DDD)B .B−1

D = ((B − 1)(B − 1)(B − 1)...(B −
1)B = (1000...01̄)B .

IV. I NVERSION ALGORITHM

Elliptic curve cryptography relies on efficient algorithmsfor
finite filed arithmetic. For instance, the elliptic curve digital
signature algorithm requires efficient addition, multiplication
and inversion in the finite fields of sizes larger than2160.
This poses a significant problem in embedded systems
where computational power is quite limited and public-key
operations are unacceptably slow[7]. An efficient way to
calculate multiplicative inverses is to use binary extended
Euclidean based Algorithms. One such efficient inversion
algorithm is the Montgomery. However this algorithm uses
only Montgomery arithmetics and renders to be unsuitable for
a special modulai. There is however an Algorithm proposed
for Mersenne primes of the form2q-1.[8]

Algorithm A-modified for divison with scaled modulus
Input: a ∈ [1, p− 1],p,andqwherep is prime andp = 2q − 1
Output: b ∈ [1, p− 1] whereb = a−1 (mod p)

1: (b, c, u, v) := (1, 0, a, p);
2: Find e such that2e ‖ u
3: u := u/2e; //shift of trailing zeros
4: b := ∓(2q−eb) (mod m); //circular left shift
5: if u = 1returnb;
6: (b, c, u, v) := (b + c, b, u + v, u);
7: go to step 2

The above algorithm has been modified . This simple
modification saves one multiplication in elliptic curve
operations. The Algorithm A modified is shown below:

Algorithm A-modified for divison with scaled modulus
Input: a ∈ [1, m−1] ,d ∈ [1, m−1],m,andqwherem = 2q±1
Output: b ∈ [1, m− 1] whereb = d/a (mod m)

1: a := a. · s (mod m)
2: (b, c, u, v) := (d, 0, a, m);
3: Find e such that2e ‖ u
4: u := u/2e; //shift of trailing zeros
5: b := ∓(2q−eb) (mod m); //circular left shift
6: if u = sreturnb;
7: (b, c, u, v) := (b + c, b, u + v, u);
8: go to step 3

Inversion algorithms efficiency is measured by the number
of iterations k. To show that Algorithm A is efficient in
terms of iteration number, we compared its distribution for
k against that of a Montgomery inversion algorithm. We com-
puted the inverse of 1000 randomly chosen integers modulo
m = 2167 + 1 using Algorithm A. Sincep = m/3 is
a 166-bit prime we repeated the same experiment with the
Montgomery inversion algorithm usingp and we depicted
the two distributions in Figure 1. Besides having much easier
operations in each iteration one can easily observe the average
number of iterations of Algorithm A is slightly lower than the
number of iterations of the Montgomery inversion algorithm.

V. ELLIPTIC CURVE ARCHITECTURE

In developing the arithmetic architecture we primarily fo-
cused on finding the minimal circuit to implement the Al-
gorithm A efficiently. Since the architecture is build around
the idea of maximizing hardware sharing among operations,
the multiplication, squaring and addition operations are all
achieved by the same arithmetic core. The simplicity of
Algorithm A and scaled arithmetic allows us to accomplish
all operations using only a few small state machines. The
arithmetic unit is depicted in Figure 2.

What follows is an outline for the implementation of basic
arithmetic operations as follows:

Fig. 1. Distribution ofk in Algorithm A and the Montgomery inversion
algorithm

• Modulo Reduction: Since the hardware works for
m = 2167 + 1, 168 bit registers would be sufficient.
However, we used an extra bit to detect when the
number becomes greater thanm. If one of the left-most
bits of the number (carry or sum) is one, the number is
reduced modulo m.
2168 = 2.(2167 + 1)− 2 = 2m− 2 = m− 2 (mod m).
Hence the reduction is achieved by subtracting
2168 (or simply deleting this bit) and adding
m − 2 = (11...11111)2 (167 bits) to the number.
If both of the leftmost bits are 1 then :
2.(2168) = 4.(2167+1)−4 = 4m−4 = m−4 (mod m).

Thereforem − 4 = (111...11101)2 (167 bits) has to be
added to the number and both of the leftmost bits are
deleted.

• Subtraction: Supposek is a 168 bit number which we
want to subtract from another number modulom. The
bitwise complement ofk is found as
k′ = (2168 − 1)k = 2.(2167 + 1) − 3 − k = −3 − k
(mod m). Thus −k = k′ + 3 (mod m). This means
to subtract k from a number we simply add the bitwise
complement ofk and 3 to the number. It is worth noting
that our numbers are kept in a carry save represntaion ,
there are two 168-bit numbers represntingk.

• Multiplication: We serialize our multiplication algorithm
by processing one bit of one operand and all bits of
the second operand in each iteration. The standard
multiplication algorithm had to be modified to make it
compatible with the carry save representation. Due to
the redundant representation, the value of the leftmost
bit of the multiplier is not known. Hence the left to right

Fig. 2. Block diagram of the arithmetic unit

multiplication algorithm many not be used directly. We
prefer to use the right to left multiplication algorithm.
There are 3 registers used for the multiplication: R0
(multiplicand), R1 (product) and R2 (multiplier). The
multiplication algorithm has three steps:

1. Initialization: the control circuit does this step.
The multiplicand is loaded to R0, the multiplier is
loaded to R2 and R1 is reset.
2. Addition: This step is only done when the rightmost
bit of register R2 is 1. The content of register R0 is
added to R1.
3. Shifting: The multiplier has to be processed bit-by-bit
starting from right. We do this by shifting register R2 to
the right in each iteration of the multiplication. Since the
register R2 is connected to the comparator, the algorithm
terminates after this step if the number becomes 0
else the algorithm continues with Step 2. Note that no
counters are used in the design. This eliminates potential
increases in the critical path delay. The multiplicand
needs to be doubled in each iteration as well. This
is achieved by shifting register R0 to the left. This
operation is performed in parallel with shifting R2, so no
extra clock cycles are needed. However shifting to the
left can cause overflow. Therefore, the result needs to be
reduced modulo m if the leftmost bit of the register R0
is 1.

• Inversion: To realize the inversion operation there are four
registers used to holdb,c,u andv, two temporary registers
are used for the addition of two numbers in carry-save

architecture. Two carry-save adders, multiplexers and
comparator architecture are also utilized. The inversion
algorithm shown in Algorithm A has 5 steps, which are
depicted in Figure 3.

1: Intialize all registers
(b, c, u, v)← (1, 0, a, m)
2: Shift off all trailing zeros and rotate b
u← u >> e b← b >> e (mod m)
3: Check terminate condition
if u = s returnb
4: Update variables
(b, c, u, v)← (b + c, b, u + v, u);
go back to step 2

Figure 3: Hardware algorithm for inversion.

VI. RESULTS

The presented architecture was developed into Verilog mod-
ules and synthesized using Synopsys tools Design compiler
and Power Compiler. The resulting architecture was synthe-
sized for three operating frequencies. The implementation
results are shown in table 1.

Table 1: Implementation Results.

OP. Freq Area Power Avg. Delay
(MHz) (gates) (mW) (msec)

20 30,333 0.99 31.9
100 30,443 4.34 6.3
200 34,390 9.89 3.1

As depicted in the table the area varies around 30 K gates.
The circuit achieves its intended purpose by consuming only
0.99mW at 20 Mhz. In this mode the point multiplication
takes about 31.9 msec. Although this is not very fast, this
operating mode might be useful for interactive applications
with strict power requirements. The design operates serially
in one operand leading to a lower critical paths and much
smaller area in the design. Which translates to lower power
at a balanced frequency not so high and not so low[8].

VII. C ONCLUSION

We demonstrated that scaled arithmetic, which is based
on the idea of transforming a class of primes into special
forms that enable efficient arithmetic, could be used in elliptic
curve cryptography. Implementation results show that the use
of scaled modulai in elliptic curve cryptography offers an
efficient performance in terms of power. The use of the special
modulai allowed for a superb inversion implementation. This
itself eliminated the need for projective coordinates thatre-
quired prohibitively a large amount of extra storage. The fact
that the same data path (i.e. arithmetic core) is used for the
filed operations leads to a very small chip area. Elliptical curve
cryptography offers a lot of promise in terms of security and
power requirement then the any other present cryptosystems.

More research is needed in this field for more better and
effective implementation[8]

REFERENCES

[1] W. Diffe and M. E. Hellman., “New directions in cryptography.” IEEE
Transactions on information Theory, pp. 22:644–654, November 1976.

[2] N. I. for Standards and Technology, “Digital signature standard (dss).”
Federal Register, p. 56:169, Aug 1991.

[3] N. Koblitz, “Elliptic curve cryptosystems.”Mathematics of Computation,
pp. 48(177):203–209, Jan 1987.

[4] A. J. Menezes., “Elliptic curve public key cryptosystems,” Kluwer Aca-
demic Publishers, Boston, MA, 1993.

[5] F. R. Henriquez and C.K.koc., “Parallel multipliers based on special
irreducible pentanomials,”IEEE Transactions on Computers, Aug 2002.

[6] H.-S. Kim., “Efficient systolic architecture for modular multiplication
over gf(2),”PARA’04 State-of-the-Art in Scientific Computing, June 2004.

[7] S. Baktir, “Efficient algorithms for finite fields, with applications in
elliptic curve cryptography,” Master of Science, Worcester Polytechnic
Institute, 2003.

[8] B. Sunar and E. Savas, “Low-power elliptic curve cryptography using
scaled modular arithmetic.” IEEE, March 2 2004.

