Performance Evaluation of AES Candidates using
FPGA Implementation

Ashish
Department of Computer Science,
Oregon State University, Corvallis, Oregon 97331 -USA.
E-mail: ashish@cs.orst.edu

Abstract— The Data Encryption Standard (DES) expired
in 1998, now the Advanced Encryption Standard is un-
derway. The reprogrammable devices such as Field Pro-
grammable Gate Arrays (FPGAs) are are attractive op-
tions for encryption algorithms using hardware because they
provide agility for cryptographic algorithms, physical secu-
rity and better performance than software implementations.
Among the various time-space implementation tradeoffs we
focus primarily on time performance. This paper investi-
gates the significance of FPGA implementation of serpent
algorithm, one of the AES candidate algorithm. One of the
main finding of the paper is that Serpent algorithm can be
implemented with encryption rates beyond 4 Gbits/ sec on
current FPGAs.

I. INTRODUCTION

After the expiration of DES standards in 1998, the
National Institute of Standards and Technology (NIST)
has initiated a process to develop a Federal Information
Processing Standard (FIPS) for the Advanced Encryption
Standard specifying an Advanced Encryption Algorithm
(AES). The AES will specify a non-classifed, publicly dis-
closed encryption algorithm that will be as widely accepted
as DES in the private and public sectors. NIST has devel-
oped candidate algorithms for inclusion in AES, resulting
in fifteen official candidate algorithms. AES candidates can
be efficiently implemented in both hardware and software.

The advantages of a software implementation include
ease of use, ease of upgrade, portability, and flexibility.
A software implementation offers only limited physical se-
curity, especially with respect to key storage. Conversely,
cryptographic algorithms and their associated keys that are
implemented in hardware are, more physically secure as
they cannot easily be modified by an outside attacker

Reconfigurable devices such as FPGAs are a attrac-
tive option for a hardware implementation as they pro-
vide the flexibility of dynamic system evolution as well
as the ability to easily implement a wide range of func-
tions/algorithms. It appears to be especially relevant to fo-
cus on high-throughput implementations for FPGA-based
encryption. Private-key cryptographic algorithms seem to
fit extremely well with the characteristics of the FPGAs.
The fine-granularity of FPGAs matches extremely well
the operations required by private-key cryptographic algo-
rithms such as bit- permutations, bit-substitutions, look-
up table reads, and boolean functions. On the other hand,

Author is a graduate student at the Department of Computer Sci-

ence, Oregon State University, Corvallis, Oregon 97331. E-mail:
ashish@ece.orst.edu

the constant bit-width required alleviates accuracy-related
implementation problems and facilitates efficient designs.
Moreover, the inherent parallelism of the algorithms can
be efficiently exploited in FPGAs. Multiple operations can
be executed concurrently resulting in higher through- put
compared with software-based implementations. Moreover,
the key-setup circuit can run concurrently with the crypto-
graphic core circuit resulting in low latency time and agile

II. FPGA OVERVIEW

Processors are general purpose and can virtually exe-
cute any operation. However, their performance is limited
by the restricted interconnect, data path, and instruction
set provided by the architecture. Conversely, ASICs are
application specific and can achieve superior performance
compared with processors. However,the functionality of an
ASIC design is restricted by the designed parameters pro-
vided during fabrication. Any update to an ASIC-based
platform incurs high cost. As a result, ASIC-based ap-
proaches lack flexibility. FPGA technology is a growing area
of research that has the potential to provide the perfor-
mance benefits of ASICs and the flexibility of processors.
Application specific hardware circuits can be created on
demand to meet the computing and interconnect require-
ments of an application. Moreover, these hardware circuits
can be dynamically modified partially or completely in time
and in space based on the requirements of the operations
under execution. As a result, superior performance can be
expected compared with the performance of the equivalent
software implementation executed on a processor.

The revolution of the configurable system technology
led to the development of configurable devices and ar-
chitectures with great computational power. As a result,
new application domains become suitable for FPGAs be-
yond the initial applications of rapid prototyping and cir-
cuit emulation. FPGA-based solutions have shown signif-
icant speedups (compared with software and DSP based
approaches) for several application domains such as signal
& image processing, graph algorithms, genetic algorithms,
and cryptography among others. The basic feature un-
derlying FPGAs is the programmable logic element which
is realized by either using anti-fuse technology or SRAM-
controlled transistors. FPGAs have a matrix of logic cells
overlaid with a network of wires. Both the computation
performed by the cells and the connections between the
wires can be configured. Current devices mainly use SRAM

to control the configurations of the cells and the wires.
Loading a stream of bits onto the SRAM on the device can
modify the configurations. Furthermore, current FPGAs
can be reconfigured very quickly, allowing their functional-
ity to be altered at runtime according to the requirements
of the computation.

key-context switching.

A. FPGA-based Cryptography

FPGA devices are a highly promising alternative for im-
plementing private-key cryptographic algorithms. Com-
pared with software-based implementations, FPGA imple-
mentations can achieve superior performance. The fine-
granularity of FPGAs matches extremely well the oper-
ations required by private-key cryptographic algorithms
(e.g. Dbit-permutations, bit-substitutions, look-up table
reads, Boolean functions).As a result, such operations can
be executed more efficiently in FPGAs than in a general-
purpose computer. Furthermore, the inherent parallelism
of the algorithms can be efficiently exploited in FPGAs
as opposed to the serial fashion of computing in an uni-
processor environment. At the cryptographic-round level,
multiple operations can be executed concurrently. On the
other hand, at the block-cipher level, certain operation
modes allow concurrent processing of multiple blocks of
data. For example, in the ECB mode of operation, mul-
tiple blocks of data can be processed concurrently since
each data block is encrypted independently. Consequently,
if p rounds are implemented, a throughput speed-up of p
can be achieved compared with FPGAs, their flexibility
is restricted. Thus, the replacement of such application-
specific chips becomes very costly [11] while FPGA-based
implementations can be adapted to new algorithms and
standards. However, if ultimate performance is essential,
ASICs solutions are superior.

III. IMPLEMENTATION AND DESIGN DECISIONS

Among the various time-space tradeoffs, we focused pri-
marily on time performance. Our goal was to maximize
throughput for the cryptographic core of each candidate
algorithm. We have exploited the inherent parallelism of
each cryptographic core and the low-level hardware fea-
tures of FPGAs to enhance the performance. Moreover,
the latency issue was of primary interest, that is, the cryp-
tographic core has to commence as early as possible. Based
on the achieved throughput, we designed the key-setup
component to sustain the data rate of the cryptographic
core and to achieve minimal latency. Even if an algorithm
does not support on-the-y key generation (in the software
domain), the key setup can be executed concurrently with
the cryptographic core.

For each algorithm we implemented the encryption block
cipher for 128-bit data blocks using 128-bit keys. A single-
round” based design was chosen for each implementation.
Similar performance analysis can be performed for larger
sizes of data blocks and keys as well as for implementations
that process multiple blocks of data concurrently.

| Lat | Lat/encry | Through | Through(Kbps/slice) |
[1.96] 812 | 203.77 29.55 |

TABLE I
MARS TIME PERFORMANCE.

For each algorithm, we have also implemented the key-
setup circuit and the cryptographic core separately. For all
the implementations, the maximum clock speed of the key-
setup circuit was higher than the maximum clock speed of
the cryptographic core. Based on the results of these indi-
vidual implementations, we also provide latency estimates
in case two different clocks are used. Regarding the cryp-
tographic cores, the majority of the required operations fit
extremely well in Virtex FPGAs. The permutations and
substitutions can be hard-wired while distributed mem-
ory can be used as look-up tables. In addition, Boolean
functions, data- dependent rotations, and addition can be
mapped very efficiently onto Virtex FPGA. Wherever a
multiplication with a constant was required, constant coef-
ficient multipliers were utilized to enhance the performance
compared with “regular” multipliers. Regular multiplica-
tion is required only by the MARS and RC6 block ciphers.
In both cases, two 32-bit numbers are multiplied and the
lower 32-bit of the output are used in the encryption pro-
cess. We tried the multiplier- macros provided for Virtex
FPGAs but we found that they were a performance bot-
tleneck. Besides the excessive latency that was introduced
due to the numerous pipeline stages, excessive area was
also required since the full multiplier was mapped onto the
FPGA. Instead of using these macros, a multiplier that
computes partial results in parallel and outputs only the
required 32-bits was used. As a result, the latency was
reduced by more than 50reduced significantly.

IV. IMPLEMENTATION RESULTS

In the following, implementation results as well as rele-
vant performance issues specific to each algorithm are pro-
vided. The latency results are represented both as absolute
time and as the fraction of the corresponding encryption
time of one 128-bit block of data. In addition, the through-
put results are represented both as encryption rate and as
encryption rate elaborated on area. Finally, area require-
ments results are pro- vided for both the key-setup and the
cryptographic core circuits.

A. MARS

The MARS block cipher is the IBM submission to AES
[6]. The time performance and area requirements results

for our MARS implementation are shown in Tables 1 and
2.

A.1 Key Schedule

The MARS key expansion procedure expands the input
128-bit key into a 1280-bit key. First a linear-key expan-
sion occurs following by stirring the key-words based on

| Area Req | # slices | # slices/area |
Total 6896 1.00
Key Scheduling | 2275 0.33
Crypto Core 4621 0.67
TABLE II

MARS AREA REQUIREMENT.

| Lat | Lat/encry | Through | Through(Kbps/slice)]
[017] 015 | 11287] 42.59 |

TABLE III
RC6 TIME PERFORMANCE.

an S-box. Both processes involve simple operations per-
formed repeatedly. However, the final stage of modify-
ing the multiplication key-words involves string-matching
operations that are relatively expensive functions. String
matching is an expensive operation compared with the rest
of the operations required by MARS. A compact imple-
mentation of string-matching introduces high latency while
a high-performance implementation increases the area re-
quirements dramatically. In our implementation, the last
stage of the key-expansion process (i.e. string-matching)
was not implemented.

A.2 Cryptographic Core

The cryptographic core of MARS consists of a 16-round
cryptographic layer wrapped with two layers of 8-round
“forward and backward mixing” [6]. In our implementa-
tion only one round of each layer was implemented that
was used repeatedly. In our implementation, while the en-
cryption time for the first block of data is 32 clock cycles,
the encryption time for every following block of data is 16
clock cycles. We have achieved this improvement by in-
creasing the utilization factor of the processing stages (i.e.
all the three processing stages execute in parallel). As a
result, high throughput was achieved.

B. RC6

The RC6 block cipher is the AES proposal of the RSA
Laboratories and R. L. Rivest from the MIT Laboratory
for Computer Science [12]. The implemented block cipher
corresponds to w = 32-bit round keys, r = 20 rounds, and
b = 14-byte input key. The time performance and area

requirements results for our RC6 implementation are shown
in Tables 3 and 4.

B.1 Key Schedule

The RC6 key scheduling expands the input 128-bit key
into 42 round keys. The key for each round corresponds
to a 32-bit word. The key scheduling is fairly simple. The
round-keys are initialized based on two constants. We have
implemented the initialization procedure using a look-up
table since it is the same for any input key. Then, the con-

| Area Req | # slices | # slices/area |
Total 2650 1.00
Key Scheduling 901 0.34
Crypto Core 1749 0.66
TABLE IV

RC6 AREA REQUIREMENT.

| Lat | Lat/encry | Through | Through(Kbps/slice) |
[0.07] 015 [112.87] 12.59 |

TABLE V
RIJINDAEL TIME PERFORMANCE.

tents of the look-up table are used to generate the round-
keys with respect to the input key. As a result, remarkably
low latency can be achieved that is equal to the 150f the
time for encrypting a block of data.

B.2 Cryptographic Core

The cryptographic core of RC6 consists of 20 rounds.
The symmetry and regularity found in the RC6 block ci-
pher resulted in a compact implementation. The entire
data-block is processed at the same time by using two iden-
tical circuits. The achieved throughput depended mainly
on the efficiency of the multiplier.

C. Rijndael

The Rijndael block cipher is the AES proposal of J. Dae-
men and V. Rijmen from the Katholieke Universiteit Leu-
ven [7]. The implemented block cipher corresponds to Nb
=4, Nk = 4, and Nr = 10. The time performance and the
area requirements results of our implementation are shown
in Tables 5 and 6.

C.1 Key Schedule

The Rijndael key scheduling expands the input 128-bit
key into a 1408-bit key. Simple operations are used that
result in extremely low latency. ROM-based look-up tables
are utilized to perform the Sub Byte transformation. The
achieved latency is the lowest among all the implementa-
tions considered in this paper.

| Area Req | # slices | # slices/area |
Total 5673 1.00
Key Scheduling 1361 0.24
Crypto Core 4312 0.76
TABLE VI

RIJINDAEL AREA REQUIREMENT.

| Lat | Lat/encry | Through | Through(Kbps/slice) |

| 0.08 | 0.09 | 148.95 | 66.20 |
TABLE VII
SERPENT TIME PERFORMANCE.
| Area Req | # slices | # slices/area |

Total 2550 1.00

Key Scheduling 1300 0.51

Crypto Core 1250 0.49
TABLE VIII

SERPENT AREA REQUIREMENT.

C.2 Cryptographic Core

The cryptographic core of Rijndael consists of 10 rounds.
The cryptographic core is ideal for implementations on FP-
GAs. It combines fine-grain parallelism with look-up table
operations. The round transformation can be represented
as a look-up table resulting in extremely high speed. We
have implemented a ROM-based fully-parallel version of
the look-up table. By combining common references to
the look-up table, we have achieved a 25implementation
suggested in the AES proposal [7]. The simplicity of the
operations and the inherent fine-grain parallelism resulted
in the highest throughput among all the implementations.

D. Serpent

The Serpent block cipher is the AES proposal of R. An-
derson, E. Biham, and L. Knudsen from Technion, Cam-
bridge University, and University of Bergen respectively
[2]. The time performance and area requirements results

for our Serpent implementation are shown in Tables 7 and
8.

D.1 Key Schedule

The Serpent key scheduling expands the input 128-bit
key into a 4224-bit key. First, the input key is padded to
256 bits and then it is expanded to an intermediate key by
iterative mixing of the key data. Finally, by using look-up
tables, the keys for all the rounds are calculated. The sim-
plicity of the required operations results in extremely low
latency (the second lowest among all the implementations
considered in this paper).

D.2 Cryptographic Core

The cryptographic core of serpent consists of 32 rounds.
The round transformation is a linear transform consisting
of rotations, shifts, and XOR operations. Neither multi-
plication nor addition is required. As a result, the high-
est clock speed and the most compact implementation are
achieved among all the implementations. Furthermore, the
Ser pent implementation has the highest area utilization
factor (i.e. throughput per area unit).

| Lat | Lat/encry | Through | Through(Kbps/slice) |

[0.18] 025 [173.06 | 18.48 |
TABLE IX
Two FIsH TIME PERFORMANCE.
| Area Req | # slices | # slices/area |

Total 9363 1.00

Key Scheduling | 6554 0.70

Crypto Core 2809 0.30
TABLE X

Two FISH AREA REQUIREMENT.

E. Two Fish

The Two fish block cipher is the AES proposal of the
Counterpane Systems, Hi/fn, Inc., and D. Wagner from
the University of California Berkeley [16]. The time perfor-
mance and area requirements results of our implementation
are shown in Tables 9 and 10.

E.1 Key Schedule

The Two fish key scheduling expands the input 128-bit
key into a 1280-bit key. Moreover, it generates the key-
dependent S-box es used in the cryptographic core. Four
128-bit S-boxes are generated. Since our goal is to mini-
mize latency, we have implemented a parallel version of the
key scheduling consisting of 24 q0=ql permutation boxes
and 2 MDS matrices [16]. Moreover, the RS matrix was im-
plemented for the S-box generation. The matrices are used
for constant matrix”-to-matrix multiplication over GF(28).
The best known implementation of a constant coefficient
multiplier in FPGAs is by using a look-up table. As a
result, low latency was achieved but excessive area was re-
quired. The area requirements represent the 70a more com-
pact design (e.g. reusing processing elements), increases
the latency.

E.2 Cryptographic Core

The cryptographic core of Two fish consists of 16 rounds.
The structure of the round transformation is similar to the
structure of the key-expansion circuit. The only major dif-
ference is the S-boxes that the cryptographic core uses.

V. FPGA IMPLEMENTATIONS COMPARISONS

In Table 11, latency comparisons are made among the
FPGA implementations. The comparisons are made in
terms of absolute time and the ratio of the latency time
to the time required to encrypt one block of data. The
latter metric represents the capability of agile key-context
switching with respect to the encryption rate.

In Table 12, throughput comparisons are made among
the FPGA implementations. The comparisons are made in
terms of the encryption rate and the ratio of the encryp-
tion rate over the area requirements. Then latter metric

latzncy time latency fime
usac block encryption time
2
MARS
156
1
05
T T T T T |
I
] | :
I i
gdmmmsre T
o \\

Twcdish

Fig. 1.

Latency comparision of FPGA implementations.

reveals the hardware utilization efficiency of each imple-
mentation. Rijndael achieves the highest encryption rate
due to the matching of its algorithmic characteristics with
the hardware characteristics of FPGAs. In addition, the
encryption rate of Rijndael is higher than the ones achieved
by the other algorithms by a factor of 20-700. Moreover,
Rijndael also achieves very efficient hardware utilization.
The best hardware utilization is achieved by Serpent fol-
lowed closely by Rijndael. The latter metric combines ,
for each algorithm, the computational demands in terms of
an FPGA implementation with the inherent parallelism of
the cryptographic round. Finally, in Table 13, area com-
parisons are made among the FPGA implementations. The
comparisons are made in terms of the total area as well as
the area required by each of the key-setup and the crypto-
graphic core circuits. Serpent and RC6 have the most com-
pact implementations. Serpent also has the most compact
cryptographic core circuit while RC6 has the most compact
key-setup circuit. For the MARS block cipher, the result
shown is based on an implementation that does not include
the circuit for modifying the multiplication key-words [6].

VI. CONCLUSION

In this paper we have provided precise time performance
and area requirements results for the implementations of
the five final AES candidates (MARS,RC6, Rijndael, Ser-
pent, and Two Fish) using FPGAs. To the best of our
knowledge, we are not aware of any published extensive
results for all the AES final candidates. Qur implementa-
tions show that, compared with software implementations
(NIST Efficiency Testing [1]), superior performance can be
achieved. In particular, the latency is reduced by a factor
of 20-700 while the throughput speedup is 4-20. In ad-
dition, the key-setup process can be performed in parallel
with the encryption process regardless the capability of the
software implementation to support on-the-fly key schedul-

Throughput
bits | sec

Throughpul ! Area
Kbils [{sec * slia)
400

Findas|

MARS

Twolish

Throughput comparision of FPGA implementations.

Mrza Recurements
ol Vinex slices

Fig. 3. Area Requirements of Virtex Slices

ing. Based on the time performance results, the Rijndael
implementation achieves the highest encryption rate and
the lowest latency time due to the ideal matching of its
algorithmic characteristics with the characteristics of FP-
GAs. The work reported here is part of the USCMA ARCII
project http://maarcIl.usc.edu). This project is develop-
ing novel mapping techniques to exploit dynamic reconfig-
uration and facilitate run-time mapping using configurable
computing devices and architectures. The goal is to allevi-
ate the long map-ping time required by conventional CAD
tools. Computational models and algorithmic techniques
based on these models are being developed to exploit self-
reconfiguration using FPGAs. Moreover, a domain-specific
mapping approach is being developed to sup-port instance-
dependent mapping. Finally, the idea offl” libraries is ex-
ploited to develop a framework for automatic dynamic re-

configuration [3, 4, 8, 9, 18].

(10]

(11]
12]

[13]

[14]

(18]

REFERENCES

“A comparative study of performance of aes final candidates
using fpgas,” .

Cameron Patterson, “A dynamic fpga implementation of the
serpent block cipher,” in Cryptographic Hardware and Embedded
Systems -CHES 1999, 1998, AES Proposal, pp. 141-156.

V. K. Prasanna K. Bondalapati, “Dynamic precision manage-
ment for loop computation on recon

gurable architectures,” 1999, IEEE Symposium on FPGAs for
Custom Computing Machines.

S. Choi, “Active library for con

gurable systems,” 2000.

J. Rose S. Brown, “Fpga and cpld architectures,” 1996, IEEE
Design Test of Computers,.

C. Burwick et al., “Mars - a candidate cipherf or aes,” 1999,
AES Proposal.

V. Rijmen J. Daemen, “The rijndael block cipher,” 1999, AES
Proposal.

A. Dandalis, “Dynamic logic synthesis for reconfigiurable de-
vices,” 2000.

V. K. Prasanna A. Dandalis, A. Mei, “Domain specific mapping
for solving graph problems on reconfigurable devices,” 1999,
Reconfigurabel Architecture Workshop.

C. Paar A. J. Elbirt, “An fpga implementation and performance
evaluation of the serpent block cipher,” 2000, Eighth ACM In-
ternational Symposium on Field-Programmable Gate Arrays.
D. Fowler, “Virtual private networks: Making the right connec-
tion,” 1999.

R. Sidney R. L. Rivest, M. J. B. Robshaw, “The rc6 block
cipher,” 1998, AES Proposal.

A. Sangiovanni-Vincentelli J. Rose, A. El Gamal, “Architecture
of field programmable gate arrays,” 1993, Proceedings of the
IEEE.

S. C. Goldstein R. R. Taylor, “A high performance flexible ar-
chitecture for cryptography,” 1999, Workshop on Cryptographic
Hardware and Embedded Systems.

B. Schneier, “Applied cryptography,” 1996.

B. Schneier et al., “Performance comparison of the aes submis-
sions,” 1999, Second AES Candidate Conference.

V. K. Prasanna R. P. Sidhu, A. Mei, “Genetic programming
using self-reconfigurable fpgas,” 1999, International Workshop
on Field Programmable Logic and Applications.

“Virtex series fpgas,” .

