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Abstract— The security provided by elliptic curve (EC)
cryptography is based on the difficulty of the elliptic curve
discrete logarithm problem (ECDLP). But of late, a new
breed of attacks, namely Differential Power Analysis (DPA)
and timing attacks have rendered several cryptosystems, in-
cluding Elliptic Curve cryptosystems, vulnerable. This pa-
per generalizes side channel attacks to elliptic curve cryp-
tosystems and elucidates past and present techniques used
to attack and defend them. In particular, a method of
preventing any access to the computations being processed
by the system, using both hardware and algorithmic ap-
proaches, is presented . This system circumvents the need
to use more complicated algorithms to mask the computa-
tions being processed and achieves higher performance and
greater security.

I. INTRODUCTION

Since the introduction of elliptic curves in cryptography
by Miller [1] and Koblitz [2] in 1985, the scope of ap-
plications of elliptic curves in cryptography has increased
tremendously. Elliptic curves are defined by group struc-
tures and the arithmetic used is finite field arithmetic. This
makes it possible to translate the discrete logarithm (DL)
problem utilized by conventional cryptosystems (eg., RSA)
to the elliptic curve discrete logarithm problem (ECDLP).
The discrete logarithm problem is described as: given a
prime p, y and z, compute a from the equation y = z® mod
p. The elliptic curve version of the DL problem, ie., the el-
liptic curve discrete logarithm problem is as follows: given
an elliptic curve E defined over the finite field Fj, a point
P € E(F,) of order n, and a point @ € E(Fy), determine
the integer [,0 <[ < n — 1, such that = [P. Conven-
tional algorithmic attack on elliptic curve cryptosystems
attempt to invert the elliptic curve discrete logarithmic
problem in sub-exponential time, and very few of these
are able toperform at practical speeds. The one attack
of most significance yet is the MOV reduction technique,
formulated by Menezes, Okamoto and Vanstone in 1991
[3]. This method attempts to reduce the elliptic curve dis-
crete logarithm problem to the discrete logarithm problem
in Fx, for some integer k. But the applications of this
technique are limited only to a particular class of curves
known as supersingular curves (k < 6). There are several
other attacks, but steps can be easily taken to guard again-
sht them Thus, since there are no known sub-exponential
time algorithms for non-supersingular elliptic curves, much
smaller key lengths can be used. A generally agreed upon
number is about 160 bits. In this paper, we concentrate
on a new class of attacks, namely power attacks, on ellip-

tic curve implementations of smart-cards. The Differential
Power attacks, first described by Kocher et al. in [4] is
a powerful tool that essentially derives secret information
by monitoring the power consumption of devices . This
paper is organized as follows. We take a brief look at el-
liptic curve operations in section 2, section 3 shows how
they are susceptible to power attacks, section 4 describes
a key recovery scheme for an elliptic curve cryptosystem
using power attacks, and finally, we suggest a solution for
the described attack.

II. EiripTic CURVE OPERATIONS
An elliptic curve is the curve described by the set of
points (z,y) satisfying the equation:

(1)

y2 + a1y +asy = z° + a2x2 + a4z + ag

where
a; € Fq

For practical elliptic curve cryptography, we concern our-
selves with a restricted form of the above equation, which
is defined over a finite field. Described below is the elliptic
group mod p

Vv=z+az+b

together with a point at infinity O, where a, b satisfy the
relation

4a® + 27b%*(mod p) # 0; a,b < p

If
P = (z1,y1) and Q = (22, y2) withP # —Q
then
P+Q = (z3,y3)
where

23 =M\ — 1 — z2(mod p)

Y3 = A(21 — z3) — y1(mod p)
The value of X is given by:

ey p
A= mm PO
21@/1 if P=@Q

It should be noted that multiplication (Q = dP) is de-
fined as repeated addition.



III. DIFFERENTIAL POWER ANALYSIS (DPA)

The Differential Power Analysis technique has risen to
fame in recent times for its unconventional and straightfor-
ward approach to compromising secret information stored
in tamperproof devices such as smartcards. This section
will give the reader an insight into this ingenious technique.

DPA analysis makes use of power consumption measure-
ments made during the operation of a system to find out
if a speculated key value is correct or not. The technique
makes use of a function known as the DPA selection func-
tion, which we will denote as D. The attacker records
and observes the encryption process for several samples,
and compiles a differential trace for them by finding the
difference between the average of the traces for which the
function D equals zero and the average of the traces for
which Z equals one. What is inferred from this differential
trace is that, if the speculated key is incorrect, then this
differential value will tend to zero as the number of samples
tends to infinity. Also, if the speculated key is correct, the
DPA selection function D will be correlated to the bit that
was computed by the device. Thus statistical correlation
is used to determine the secret information stored. This
approach virtually eliminates the need to cryptanalyze the
algorithm. [4]

IV. SUSCEPTIBILITY OF ELLIPTIC CURVE
CRYPTOSYSTEMS TO DPA

Since we are discussing the DPA attack on elliptic curve
cryptosystems, let us assume that the given cryptosystem
is resistant to simple power analysis (SPA), and thus we
use the double and add resistant against SPA algorithm.[5]
This algorithm is illustrated below:

Algorithm:

input P
Q0] < P

for 7 from [ — 2 to 0 do
Q[0] «+ 2Q[0]
Q] « Q[0] + P

Q[0] + Q[di]
output Q0]

We assume here that the algorithm executes in constant
time, else it might be vulnerable to timing and simple
power attacks. Upon analysis of the above algorithm, we
can see that at step k, the partial result Q is dependent only
on the first bits (d;_1, ..., dx) of the exponent d. We could
perform several sets of computations, for the cases when
we assume the bits to be represented in binary, two’s com-
plement, etc. This will further our chances of narrowing
down the key search. Assuming that we do know the type
of representation of points in memory during processing, we
choose a particular bit of this representation. When this

point Q is processed, power consumption will be correlated
to this specific bit of Q, but also, no correlation will be ob-
served with a point that is not computed by the card. To
make this clearer, we must first understand that the algo-
rithm presented earlier proceeds in a most significant digit
first fashion. Thus, if we want to guess the second most
significant digit d;_» of the exponent, we compute the cor-
relation between power consumption and any specific bit
of the binary representation of 4P, ie., 100. If d;_5 = 0, we
know that 4P is calculated once during the execution of the
above algorithm and thus power consumption is correlated
with any specific bit of the binary representaion of 4P. If
d;—2 =1, we know that 4P is never calculated during exe-
cution, and thus the power consumption will not correlate
with 4P. Thus d; - is recovered. Subsequent bits of the
exponent d can be recovered in a similar fashion.

V. RECOVERY OF THE PRIVATE EXPONENT d IN @) = dP

Assume the algorithm is executed r times with several
values of P to compute the corresponding values of @
(Q1,-..,Q.). Let C;i(t) be the i-th iteration’s (1 <7 < r)
power consumption and s; be any specific bit in the bi-
nary representation of 4P; for 1 < i < r. The correlation
function c(t) between C;(t) and s; is given as:

c(t) =< Ci(t) >iz1,2,.. ksi=1 — < Ci(t) >i=1.2,... kisi=0

(2)

Assume that the points 4P; are computed at a time
t = t;. The power consumption C;(¢;) will then be cor-
related with the specific bit s; of the binary representation
of 4P;. The average power consumed for points where the
specific bit s; = 1 will differ from the consumption where
the specific bit s; = 0. The correlation function ¢(t) will
have a maxima at ¢ = 1, thus telling us that the points 4P;
have been computed. If the points 4P; have not been com-
puted, no maxima will be observed in the correlation c(t).
This information leads to the deducing of the bits of the
private exponent d by examination of the power correlation
characteristic.

The above described attack can be applied to various el-
liptic curve public key protocols including conventional en-
cryption and key exchange, thus serious countermeasures
must be taken in order to prevent these kinds of attacks.

The following graphs show the correlation between
the power consumption and the computation of specified
points.

Figure 1: Correlation function c¢(t) between the con-
sumption function C;(t) and the points 4P;. the figure
clearly shows a spike indicating that the point 4P; was
computed.



Figure 2: Correlation function c¢(t) between the con-
sumption function C;(t) and the points 4P;. The figure
does not show a spike indicating that the point 4P; is not
computed.

VI. SECURE ELLIPTIC CURVE CRYPTOSYSTEMS

Since the power attacks on smartcards happen to deal
with externally observing the power signatures of the com-
putations, a more pragmatic approach to countering this
problem than tweaking algorithms would be to physically
protest the smartcard from unknowingly leaking informa-
tion.

To this extent, with the advancements in capacitive
buffering technology, we have been able to come up with
a simple and unique solution to the power attack problem.
We propose an addition to the smartcard architecture in
the form of a yet to be patented Mixed Capacitance Buffer
(MCB) chip. This chip efficiently acts as a buffer between
the power source and the chip itself. Its working is simple:
micro sensors on board this chip track electromagnetic ra-
diation (using the on-board capacitance) in its immediate
surroundings as well as any residual radiation from its last
operation and produce what are known as ”chaons”. These
chaons are randomly produced particles, and are thought
to be a new form of positrons. They essentially interact

with the power source and obfuscate any power informa-
tion about the actual working of the smartcard.

A figure showing an actual implementation of the MCB
chip on a smartcard is depicted below.

Figure 3: Proposed addition to existing smartcards -
The Mixed Capacitance Buffer chip.
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Thus the problem of DPA attacks on elliptic curve im-
plementations of smartcards can be subverted in a most
cost efficient way.

The security of elliptic curve cryptosystems for a given
key length is supposedly much more than conventional al-
gorithms like RSA, etc. A set of tables are presented be-
low to show the reader the comparison between the com-
putational effort for Cryptanalysis of Elliptic Curve Cryp-
tograpy when compared to RSA. [6]

Key Size | MIPS-Years
150 3.8 x 108
205 7.1 x 1018
234 1.6 x 10%8

Table 1: Elliptic curve logarithms using the Pollard Rho
Method

Key Size | MIPS-Years
512 3 x 10%
768 2 x 108
1024 3 x 101
1280 1x 10™
1536 3 x 1016
2048 3 x 10%

Table 2: Integer Factorization using the General Number
Field Sieve

Elliptic curve cryptosystems seem to be the standard for
the future and with more research, hopefully, will reach the
status that AES enjoys today.



(1]

REFERENCES

V. S. Miller, “Use of elliptic curves in cryptography,” Proceedings
of Crypto 85, vol. Lecture Notes in Computer Science (LNCS),
no. 218, pp. 417-426, 1986.

N. Koblitz, “Elliptic curve cryptosystems,” Mathematics of Com-
putation, vol. 48, no. 177, pp. 203—209, Jan. 1987.

T. Okamoto A. Menezes and S. Vanstone, “Reducing elliptic
curve logarithms in a finite field,” IEEE Trans. Inf. Theory, , no.
5, pp. 1639-1646, 1993.

Joshua Jaffe Paul Kocher and Benjamin Jun, “Differential power
analysis,” White Paper, pp. 1-10, http://www.cryptography.com.
Jean-Sebastien Coron, “Resistance against differential power
analysis for elliptic curve cryptosystems,” Cryptographic Hard-
ware and Embedded Systems (CHES), vol. Lecture Notes in Com-
puter Science (LNCS), no. 1717, pp. 292-302, 1999.

William Stallings, Cryptography and Network Security, Pearson
Education Asia, 1999.



