Subliminal Channels: Introduction and Ideas

Lelia Barlow

Abstract— We introduce the concept of subliminal chan-
nels in cryptographic algorithms and protocols. Specific ex-
amples are presented, such as subliminal channels in digital
signature algorithms. We also present the example of mod-
ifications to TCP/IP header fields. Building on these con-
cepts, we explore some new ideas for transmitting hidden
messages using an established communication channel.

I. INTRODUCTION

There are two basic ways to hide a message, steganog-
raphy and cryptography. Steganography conceals the exis-
tence of the message. Typically, a secret message is hidden
within another message. The method for hiding the secret
message 1s not disclosed to outsiders. This concept has
been used throughout history [5]. For example, the second
letter of each word in a sentence could spell out a secret
message. A secret message could be hidden in a crossword
puzzle. The least significant bits of a digital image file
could be replaced by the bits of the secret message. The
possibilities are endless.

Cryptography does not conceal the existence of the mes-
sage, but transforms the message using scrambling tech-
niques so that an outsider can not understand the message.
Modern techniques include block ciphers such as DES and
AES, stream ciphers such as RC4, and public key algo-
rithms such as RSA. Unlike steganographic methods, these
cryptographic algorithms are published. The security of
the message does not depend on the secrecy of the crypto-
graphic algorithm. Instead, these algorithms use keys for
encryption and decryption of messages.

Subliminal channels conceal the existence of a secret mes-
sage by hiding it within a normal-looking message. How-
ever, techniques used in subliminal channels extend beyond
simple steganography. Subliminal channels typically re-
quire a shared key between the sender and the receiver,
and the security of the method depends on the secrecy of
this key instead of on the secrecy of the algorithm. Tech-
niques for constructing subliminal channels may be pub-
lished, without diminishing the effectiveness of the tech-
nique.

This intersection between steganography and cryptog-
raphy is particularly interesting. Not only may secret
messages be encrypted using cryptographic algorithms be-
fore being communicated in an obfuscated manner via the
subliminal channel, but also cryptographic algorithms and
protocols may themselves contain subliminal channels. A
very specific concern is that subliminal channels in cryp-
tographic algorithms or protocols may “leak” secret infor-
mation, such as key material.

Author is a student in the Department of Electrical & Computer
Engineering, Oregon State University, Corvallis, Oregon 97331. E-
mail: barlow@engr.orst.edu

A. The Prisoners Problem

In 1983, Gustavus Simmons introduced the concept of
a subliminal channel [1]. The concept was based on the
following abstract model.

Two accomplices have been arrested for a crime, and will
be imprisoned in different cells. The warden permits them
to communicate on the condition that the information con-
tained in the messages must be completely open to him.
The warden not only wants to be aware of any plans for
escape, but also wants to have the opportunity to substi-
tute fabricated or modified messages for genuine messages.
In order to plan their escape, the prisoners must find a
way to communicate secretly by establishing a subliminal
channel. Also, because the prisoners anticipate deception
by the warden, they only want to exchange messages that
the other may authenticate.

The prisoners solve this problem by subverting the au-
thentication without secrecy channel. If the prisoners have
m bits of information to exchange and r bits of authenti-
cation, then a total of (m+r) bits must be communicated.
Without the knowledge of the warden, the prisoners give
up some of their ability to authenticate in exchange for the
ability to communicate secretly. To communicate s bits
of secret information, the prisoners now have (r — s) bits
available for authentication. This means the probability
that the warden can succeed in deceiving the prisoners is
increased.

Simmons paper describes two examples illustrating this
concept. One example also demonstrates that detecting
the existence of the subliminal channel could be as difficult
as breaking the authentication algorithm.

While Simmons examples [1] were intended only as a
proof of concept, it was soon demonstrated that digital
signature algorithms could be used to create subliminal
channels.

B. Subliminal Channels in Digital Signatures

Both the Ong-Schnorr-Shamir identification scheme [1]
and the El Gamal digital signature algorithm [8] can be
used to create a subliminal channel [6].

A problem with these schemes is a protocol weakness [2]
that allows the subliminal receiver to impersonate the sub-
liminal transmitter. The subliminal transmitter must trust
the subliminal receiver with his private key. As a result,
the subliminal receiver could forge the digital signature of
the subliminal transmitter.

A subliminal channel could also be added to the ES-
IGN digital signature scheme [2]. This subliminal channel
has the advantage that the subliminal receiver can not im-
personate the subliminal transmitter. Only a part of the

subliminal transmitter’s private key 1s shared with the re-
ceiver. It is computationally infeasible for the subliminal
receiver to recover the subliminal transmitter’s private key.

The Digital Signature Algorithm (DSA) actually has
several possibilities for subliminal channels [8], [2]. Each
of these possibilities relies on the subliminal transmitter’s
ability to choose the DSA parameter called k. The para-
meter k is specified as a 160-bit random number [7].

The simplest subliminal channel in DSA allows the sub-
liminal transmitter to communicate a 160-bit message to
the subliminal receiver by choosing a particular value of
k. Because the k parameter should appear to be random,
the subliminal message should be encrypted using a one-
time pad shared between the subliminal transmitter and
the subliminal receiver. Another drawback of this tech-
nique is that the subliminal transmitter’s private key is
shared with the subliminal receiver.

DSA also has subliminal channels that do not require
the subliminal transmitter’s private key to be shared with
the subliminal receiver. To send one single bit of subliminal
information per signed message, the subliminal transmitter
and the subliminal receiver agree on a shared secret key for
the subliminal key. This shared secret key is a prime that
we will call P (note that this P is not defined by DSA). To
communicate the subliminal message “0,” the subliminal
transmitter chooses a particular value for the k parameter
so that the DSA parameter r is a quadratic nonresidue
modulo P. To communicate the subliminal message “1,”
the subliminal transmitter chooses k so that r is a quadratic
residue modulo P.

To extend this technique so that multiple subliminal bits
are sent in a single signed message, the subliminal trans-
mitter and the subliminal receiver agree on multiple shared
secret keys. For example, to send two subliminal bits per
message, primes P and) are established. A value of k is
chosen so that r is either a quadratic residue modulo P or
a quadratic nonresidue modulo P, and either a quadratic
residue modulo @ or a quadratic nonresidue modulo Q.

It is possible that a malicious implementation of DSA
can leak bits of the signer’s private key [6]. As long as the
primes (P, @, etc.) chosen by the implementation stay a
secret, the signer can not prove that her private key was
stolen.

These subliminal channels in DSA do not work if the &
parameter can not be chosen arbitrarily. One technique
proposed [8] is to have the sender and receiver jointly
choose k. For example, k = k%" mod [p — 1] where k'
is selected by the sender, k' is selected by the receiver,
and p is the DSA parameter. Simmons observed [8] that
this technique can allow the receiver to embed a subliminal
message in the sender’s signature by choosing a particular
k' value. Simmons dubbed this the “Cuckoo’s Channel.”

C. Anther Type of Hidden Channel

To discuss only the subliminal channel in an authentica-
tion without secrecy scenario is to ignore the possibility of
hidden channels below the application layer. Information

can also be passed from system to system by exploiting the
communication channel itself.

A good example is found in the TCP/IP protocol
suite[4]. Normal-looking packets can carry secret informa-
tion if we place this information in certain fields of the
TCP/IP header. Although the optional fields may be used
for this purpose, required fields are preferable because they
are less likely to be altered during transmission.

One required field that may be manipulated is the TP
Identification field. The IP Identification field was designed
to contain a unique value so that if a packet is fragmented
during transmission, it could be correctly re-assembled at
the receiver. However, because there were no other require-
ments placed on the TP Identification field, this 16-bit field
is available for use in covert transmissions.

Another interesting field is the 32-bit TCP Initial Se-
quence Number field. Clearly, an available 32 bits
per packet provides more flexibility than 16 bits per
packet. However, because tools such as Ethereal
(www.ethereal.com) can detect out-of-order sequence
numbers for a TCP session, this may be a less-desirable
technique unless multiple short-lived sessions are used.

D. Applications and Implications

One frequently-cited use of a subliminal channel is the
situation where a message is signed under threat. The
signer agrees to sign the message, but imbeds the sublimi-
nal message that he was coerced. Another possible applica-
tion involves marking files or digital cash to allow tracking
by the entity that produced the mark. Malicious software
such as spyware could be used to leak secret information
from a host computer without the leak being detected.

It is important to note that the existence of a subliminal
channel could compromise the security of a system. Tech-
niques for creating subliminal channels should be studied,
in order to better understand possible threats and avenues
of attack.

II. NEw WORK

The concept of a subliminal channel is not new, but there
have been relatively few publications in this area. The pre-
ceding research inspired the author to explore some ideas
and potential applications. Although it is difficult to de-
termine whether these ideas are indeed “new,” they were
not copied from any existing publication.

In the Prisoner’s Problem scenario, the sender and re-
ceiver are required to communicate in the open. They use
an authentication without secrecy channel, and commu-
nicate hidden messages by subverting the authentication
scheme.

Here, we assume that the sender and receiver are allowed
to have secrecy. They may encrypt messages before trans-
mitting on the channel. We further assume that the sender
and receiver have unlimited access to the channel and can
encrypt whatever content they choose. We explore some

possibilities for extending the encryption scheme to include
an additional hidden message. Although this may initially
appear redundant, we will show that applications for these
techniques may exist.

A. Concept

The sender and receiver agree on multiple shared secret
keys. For simplicity, we present only the case where two
secret keys are shared. Call these keys Ksl and Ks2.

In addition, for simplicity, we consider only the case
where K sl and Ks2 were generated independently. How-
ever, we note that optimizations for an efficient implemen-
tation may be possible. For example, if Ksl represents
enough key material for 12 rounds of a block cipher, then
Ks2 could be a truncated version of Ksl that only repre-
sents enough key material for 10 rounds of that block ci-
pher. (In this example we assume that 10 or more rounds
of the block cipher will provide computational security.)

We encrypt each block of the plaintext message with
either Ks1 or Ks2. If the block was encrypted with Ksl,
then the receiver interprets the hidden message as a “0”
bit. If the block was encrypted with Ks2, then the receiver
interprets the hidden message as a “1” bit. In this way, each
encrypted block contains one hidden bit of information.

Let the plaintext message be represented by M, where
M=M1,M2 M3,... Mk. Each Mz is a block of length
L, and M consists of k blocks. Let the hidden sequence of
bits be represented by b, where b = b1,52,b3,... bk. Fach
bi is a single bit, which could take the value “0” or “1.”

In Figure 1, we see that each block of the plaintext mes-
sage 1s encrypted with either Ksl or Ks2 to produce a
corresponding block of ciphertext. The receiver interprets

the ciphertext to determine whether Ksl or Ks2 was used,
a,nd therefOT'P fhP T'P(’Pi‘7PT' recovers i)

bi=0: Use Ksl bj=1: Use Ks2
Mi Mj

Ks1—{Encrypt Ks2 —Enerypt
Ci Cj

Figure 1: Concept.

It is possible that the original plaintext message could be
known to both the sender and receiver prior to the commu-
nication. However, this implies that the message is analo-
gous to a lengthy version of a one-time pad. Instead, we
focus on techniques to recover the message as well as the
hidden sequence of bits.

To recover the message, we need a way to determine if
decryption is successful with a given key. In other words,
the decrypted message must be recognizable to the receiver
decrypting 1t. We will assume this is the case, and that if

overhead is incurred, it is incurred whether this concept is
utilized or not.

B. Variations

Several variations on this basic concept are possible.
Three variations are described below.

Variation A

The most basic methodology is described in Figure 2.
The sender encrypts a message and sends each block of
ciphertext, here called C'7, to the receiver. The receiver
decrypts C'7 using K sl to produce Mix. Then the receiver
tests whether Mix is correct: Mix = Mzi. If so, then Mg
was encrypted using Ksl and bt = 0. If not, then Mq
was encrypted using Ks2 and bi = 1. To recover M, the
receiver muse decrypt again, this time using Ks2. Note
that, on average, the receiver will decrypt 1.5 times for
each block received.

Encrypt: Decrypt:
Mi Ci
Ks(bi
®), Encrypt Ksl—sDeerypt
Ci Mi*
Ks1 or Ks2 is used, Test: is Mi* correct?
depending on bi (yes/no)

Figure 2: Variation A.

Mi* = Mi Mi* £ Mi

Ks(bi) = Ks1 Ks(bi) = Ks2

bi=0 bi=1
Recover Mi:
Deerypt Ci
with Ks2

Figure 3 shows the steps involved in the test to determine
whether Mix is correct. If Mix is not correct, then a second
decryption is necessary to recover Mi.

Variation B

Figure 4 describes an alternate approach. Here, there is
no plaintext message to send. A counter is incremented,
and used in place of the plaintext blocks. The sender en-
crypts the counter value using the key determined by the
value of bi, and produces a result called VVi. Note that V¢
is of length L.

Encrypt:
Counter Counter+1

M Counter+(i-1)

(ith block)

Counter+(k-1)

Ks(bk)

Vk

Test: Vi= Vi* ?

Yes: Ks(bi) = Ksl
Ksl bi=0

No: Ks(bi) = Ks2
hi=1

Vi*

Figure 4: Variation B.

Note that there 1s no need to recover a message, and
therefore only a single encryption is needed to decode the
sequence b.

Variation C: CTR Mode

In Figure 5, we present an approach that is very similar
to the Counter Mode of Operation for block ciphers. An
advantage of this method is that plaintext statistics would
be difficult to exploit. Further, it has the advantage that
both Vi values (that is, one Vi value for K'sl1 and one Vi
value for Ks2) can be pre-computed by the receiver before
Ri arrives.

Decrypt:
Counter+(i-1)

Encrypt:
Counter+(i-1)

Ks(bi)

Ksl

Mi Ri

Ri Mi*
Send Ri Test: is Mi* correct?

Figure 5: Variation C.
Mi*

Mi* = Mi
Ks(bi) = Ksl
bi=0

Mi* £ Mi
Ks(bi) = Ks2
bi=1

Counter+(i-1) with Ks2,

Recover Mi: Lincrypt 1
XOR result with Ri

Figure 6: Decrypt Test.

Figure 6 shows the steps involved in the test to determine
whether Mix is correct. If Mix is not correct, then a second
encryption is necessary to recover Mi.

C. Possible Applications

A variety of applications of this concept can be imagined.
Four possible applications are described: expanding a se-
quence, stamping a message, restricting access to portions
of a message, and reducing session rekeying overhead.

Sequence Expansion

Variation B may be used to expand a k-bit sequence
into a sequence of length kzL. (Recall that L is the block
length.) Here, let b = 61,562,083, ... bk be the binary se-

quence. The expanded sequence can be expressed:

Sequence = Encrypt[Ks(bl), counter],
Encrypt[Ks(b2), counter +1], ...
Encrypt[Ks(bk), counter + (k — 1)]

The expanded sequence can be re-generated if b, counter,
Ksl, and Ks2 are known. However, the expanded sequence
would be computationally difficult to create without Ksl
and Ks2. Conversely, it would be difficult to determine b
without K'sl and Ks2.

Stamp a Message

Either Variation A or Variation C could be used to
“stamp” a message. Figure 7 describes this approach.

Stamp
Mi Counter+(i-1)
Ks(bi) Ks(bd)
Mi
Si Si

Variation A Variation C

B e L A e

The 57 values form the basis of the stamp. There are sev-
eral possibilities for forming the stamp from the sequence
of St values:

o Stamp = S1,52,53,... Sk

o Stamp = Hash (51,52,53,... Sk)
« Stamp = HMAC (S51,52,53,... Sk)
« Stamp = DAC (51,52,53,... Sk)

This concept of a stamp differs from the concept of a digi-
tal signature. A digital signature provides non-repudiation
because only the signer knows the private key. Also, a
digital signature can be verified by anyone who has the
corresponding public key.

In contrast, only authorized individuals share Ksl1 and
Ks2. Only authorized individuals can stamp a message,
and verify a stamp on a message. Therefore, the stamp
only has significance within this group of authorized indi-
viduals. Further, each authorized individual could produce

a different but verifiable stamp using a different sequence
b. These sequences could be assigned by the group. If the
sequence b has length &, then up to 2¥ group members can
be accommodated in this scheme.

To verify a stamp, M, b, Ksl, and Ks2 are needed. A
caution of this method is that authorized individuals can
impersonate each other. Once I verify your stamp, I know
your sequence b. In addition, to avoid replay attacks, a
timestamp or nonce should be added to the message before
it is stamped.

Restrict Access to Portions of a Message

Suppose that certain information in a message M is des-
ignated “confidential.” Only authorized individuals should
be allowed to view these parts of the message. Two versions
of the message could be created: one for individuals with
authorization, and one for individuals without authoriza-
tion. Alternatively, a single version of the message could
be sent to all individuals, if confidential information was
hidden from unauthorized individuals.

Suppose the message M consists of five blocks: M =
M1, M2, M3, M4, M5. Blocks M2 and M5 contain con-
fidential information. Therefore, the sequence b is chosen
such that b = b1,52,63,b4,065. The value 0 is assigned to
b1, b3, and b4. The value 1 is assigned to 42 and b5. Now
either Variation A or Variation C could be used to encrypt
the entire message. Unauthorized recipients have Ksl, and
can recover only blocks M1, M3, and M4. Authorized re-
cipients have Ksl and Ks2, and can recover the entire
message.

Note that if less than a full block of information is con-
fidential, the block could be padded to the correct length
before encrypting. Similarly, if there is less than a full block
of information that is not confidential, it is padded to the
correct length before encrypting.

Reduce Session Rekeying Overhead

Variation A or Variation C could be used to transmit
“raw” session key material between the sender and the re-
ceiver while encrypted messages are exchanged. This ap-
plication allows the session key to be updated without the
overhead of additional protocol messages. The tradeoff is
that the sender and receiver have more processing work to
do. This method is described in Figure 8.

Sender Receiver
M, b
generates, sends C — receives C

C=C1,C2,C3,...Ck
Ci= Encrypt[Ks(bi), Mi]

recovers M, b

Splits b: b =bx, by

builds new Ks1, Ks2
Ks1’ = Encrypt[Km,bx]
Ks2" = Encrypt| Km,by]|

Splits b: b = bx, by

builds new Ks1, Ks2
Ks1’ = Encrypt[Km,bx]
Ks2’ = Encrypt[Km,by]

Figure 8: Session Rekey.

The sender and receiver share a master key, Km, and a
split session key, Ks1 and Ks2. The sender has a message
M and a recently-generated sequence b, and produces the
ciphertext C'. The ciphertext C'is sent to the receiver. The
receiver obtains C'; and recovers M and b. The sender and
the receiver split the sequence b in half, so that the first half
of b 1s called bx and the second half of b is called by. Thus,
b = bx,by. Note that the sequence b has an even number
of terms; in other words, k is even. The new session key 1s
computed as:

Ksl,ew = Encrypt[Km, bx]
Ks2,ew = Encrypt[Km, by].

The values bz and by are encrypted with the master key
to obtain forward secrecy of the session keys. Without
this step, if an adversary knows one session key, then the
adversary can determine all future session keys.

III. FUTURE WORK

Any of the above ideas could be further refined and ex-
panded. Simulation may help to uncover any potential
weaknesses the author has not yet imagined.

REFERENCES

[1] G. J. Simmons, “The prisoner’s problem and the subliminal
channel,” Advances in Cryptology: Proceedings of CRYPTO
’83, Plenum Press, 1984, pp.51-67.

[2] G.J.Simmons, “A secure subliminal channel (?),” Advances in
Cryptology — CRYPTO ’85 Proceedings, Springer-Verlag, 1986,
pp- 33-41.

[3] Y. Desmedt, “Abuses in cryptography and how to fight them,”
Advances in Cryptology — CRYPTO ’88 Proceedings, Springer-
Verlag, 1990, pp. 375-389.

[4] C. Rowland, “Covert channels in the TCP/IP protocol suite,”
First Monday, web address, 2005.

[6] D.Kahn, The Codebreakers: The Story of Secret Writing, New
York: Macmillan Publishing Co., 1967.

[6] B. Schneier, Applied Cryptography Second Edition: Protocols,
Algorithms, and Source Code in C, New York: John Wiley and
Sons, Inc., 1996.

[7] National Institute of Standards and Technology, “Digital Sig-
nature Standard,” NIST FIPS PUB 186,, U.S. Department of
Commerce, May 1994.

[8] G.J. Simmons, “Subliminal channels: past and present,” FEu-
ropean Transactions on Telecommunications, vol. 4, no. 4, Jul.
Aug. 1994, pp. 459-473.

[9] G.J. Simmons, “Subliminal communication is easy using the
DSA,” Advances in Cryptology — EUROCRYPT ’93 Proceed-
ings, Springer-Verlag, 1994, pp. 218-232.

[10] Y. Desmedt, “Subliminal-free authentication and signature,”
Advances in Cryptology — Eurocrypt '88 Proceedings, Springer-
Verlag, 1988, pp. 23-33.

