Analysis Implementation of Fast RSA Key

(Generation on Smartcards

Minte Chen
Electrical and Computer Engineering
Oregon State University
Corvallis, Oregon 97331-4501
Email: chenmin@ece.orst.edu

Abstract— Smartcard, or smart card, is a plastic card with
an embedded microcomputer chip. The dimension of a
smartcard is the size of an ordinary credits card, which can
be easily carried around in a wallet. Smartcards are much
more difficult to duplicate than magnetic strip cards and
cryptographic functions can be implemented inside these
cards. With substantial cost reductions and ability to han-
dle multiple applications on a single card, the smartcards are
about to enter a period of the rapid growth. An individual
bearing a single smartcard will be able to electrically and se-
curity interact with several servers or service provides. As a
consequence, an entirely new type of commercial and educa-
tional landscape is being created. However, smartcard itself
has limited computing power and memory capacity. This
makes it a difficult job to efficiently implement the crypto-
graphic functions inside smartcard. RSA is one of the most
popular public key cryptographic algorithms. In this paper
, we are going to analysis the fast RSA key implementation
on smartcards using different algorithms.

I. INTRODUCTION

The smartcard, an intelligent token, is a credit card
sized plastic card embedded with an integrated circuit
chip. It provides not only memory capacity, but com-
putational capability as well.It has been said that smart-
cards will one day as important as computers are to-
day[1],[2].Smartcards have proven to be quite useful as a
transaction/authorization/identification medium in some
countries.

As their capability grow, they could become the ultimate
client, eventually replacing all of the things we carry around
in our wallets, including credit cards, licenses and cash.
By containing various identification certificates, smartcards
could be used to identify attributes of ourselves no mat-
ter where we are. Smartcards are often used in different
applications which require strong security protection and
authentication. For example, smartcards can act as identi-
fication card which is used to prove the identity of the card
holder. It also can be a medical card which stores the med-
ical history of a person. Furthermore, the smartcard can
be used as a credit/debit bank card which allows off-line
transaction. All of these applications require sensitive data
to be stored in the card, such as personal medical history
and cryptographic key for authentication, etc.

The ability to compute and interact in a system gives
the smart card access to powerful cryptographic algorithms
and improves the flexibility, security and reliability of the
system. The possibility of applications that required high
degree of security.

As cryptography made great progress in the 1960s and
security mechanism could be proved mathematically ,
smartcards proved to be an ideal medium for safely storing
cryptographic keys and algorithms.In recent years, public
key cryptography has gained increasing from both com-
panies and end uses who wish to use this technology for
secure a wide variety of applications. One consequence of
this trend has been the growing importance of public key
smart to store the user’s private keys and provide a secure
computing environment for private key operations. As a
result, smartcards can be seen as a kind of security tokens.

Main industrial efforts concentrated on the performance
of these algorithms with key sizes that were lying around
the 1024-bit range. The new range of key sizes for RSA is
now generally up to 2048-bit computations. However, the
computational power of smart cards is very limited and
the on-card implementations are usually much slower than
that in desktops. Many chip manufactures are therefore
proposing ever better and faster implementations of public
key algorithms using their special hardware, called crypto-
coprocessor, on their chip ,which can accelerate the crypto
computations for a class of public key cryptographic algo-
rithms. The crypto-coprocessor is a specialized circuitry
that perform fast modular exponentiation. Like RSA uses
modular exponentiation for encryption and decryption of
data for both operations.We categorized RSA key gen-
eration algorithms into two types, generating the public
and private key pairs in a single computer and generat-
ing a shared RSA key by multiple computers. Although
crypto-coprocessor accelerate the RSA key generation for
the modular exponentiation operation. However, it cannot
let smartcards achieve the desired efficiency for on-card key
generation.

II. KEY GENERATION

The RSA was proposed by Rivest, Shamir, and Adleman
in 1977[3].RSA use a key for encryption that is different
from the decryption key. The procedure for generating a
key pair is as below:

1.Choose secret primes p and ¢ and computes n = pg

2.Choose e with ged(e,(p—1)(¢g— 1)) =1

3.Compute d with de = 1(mod(p — 1)(q — 1))

4.The pair (e,n) is published as the public key, and the
pair (p, q,d) is kept secret as private key

ITI. LARGE PRIME FINDING ALGORITHMS

The total time for generating an RSA key pair is almost
totally due to the time of finding two large primes. There-
fore, it is important to optimize the algorithm used for
finding large prime for generating the RSA key pairs.

A. Prime Distribution

The number of primes less than a natural number N
is asymptotically equal to N/logN[6].We randomly choose
z,the probability of z being a prime number is approxi-
mately (N/logN)/N.If z is an n-bit number,then logz =
n * log2 = 0.69n. Tablel shows the number of n-bit num-
bers containing one prime on the average.

Table 1. Number of randomly generated numbers needed
to obtain one prime on the average.

256
176

512
355

1024
710

2048
1420

bit number
average number necessary

B. Prime Test

Generating a random number, the generating number
must be tested for primality in order to be useful for gen-
eration of a RSA key pair. Primality tests can be divided
into two categories: primality test and probabilistic primal-
ity test[4].Primality test seems the appropriate technique
when finding a prime number. However, they are more
complex and computing power intensive than probabilistic
primality test. In this paper ,we are going to use proba-
bilistic primality test

C. Generating Primes Algorithm

We use naive algorithm to find an random n-bit odd
prime number, which T use the odd number as input[5].
In this algorithm ,the probabilistic primality test returns
that a number is not a prime number, another random odd
number is chosen and the same procedure is repeated until
a prime number is found. As Algorithm A is shown the
naive algorithm.

Algorithm A: Naive prime algorithm

1: pick a random n-bit odd number ¢
2: if T'(q)= false then goto 1
3: output ¢ and halt

An average of 176 calls to the probabilistic primality test
function T is required to find a 512-bit prime using the
naive prime algorithm.An average of 355 calls to T is re-
quired to find a 1024-bit prime.

We can reduce the number of calls to the probabilistic pri-
mality test function 7' by using a variation of sieve of Er-
atosthense called before calling 7'.As shown in Algorithm
B. The implementaiton of the primality test function T
must be optimized and the number of calls of 7" must be
the lowest as possible.

Algorithm B: Variation of sieve Eratosthenes

1: Let p; be the i-th smallest odd prime (p; = 3,
P2 = 5,)

2: Let S(k) be a set of small primes such that S(k)=
[pilpi < k]where k can be any positive number

3: For a given number ¢, divide ¢ by all the
elements in S(k)

4: 1If q is not divisible by all the elements in S(k),q
is said to survive the sieve.Otherwise ¢ is said to
fail the sieve.i.e.,q is a composite number

The sieve function is very time efficient for S(k) when
k is small, requiring much less processing time than
T.Therefore, it increases the overall performance of the
prime finding algorithm.

We can modify Navie algorithm by using the sieve as
shown Algorithm C. In the new algorithm, ¢(*) for i = 0, 1..,
are tested until a probable prime is found.Another opti-
mized for the algorithm of Algorithm C is that a new ¢(?)
is generated by adding 2d to ¢(i~1).Hence, the algorithm
doesn’t need to generate an n-bit random number on each
iteration, saving the time required for random generation.

Algorithm C: Naive algorithm modified to use sieve

1: Pick a random n-bit odd number ¢ and let
¢ =¢gi=0

2: Call sieve procedure ,if (%) fails,goto 4

If T(¢¥)) =TRUE,output ¢(*) and halt

4: qUH+1) = ¢ 4 2d5 =4 + 1,goto 2 (d is a chosen
integr)

@

Only a small portion of the prime candidates is able to
reach step 3 on the algorithm C because of the sieve proce-
dure.Therefore,the average numberof calls to 7' is reduced,
shown in Table2.

Table 2. Expected average number of calls to the
probabilistic primality test 7.

bit number | S(29) | S(256) | S(512) | S(2560)
512-bit 54.7 35.5 31.0 25.3
1024-bit 109.3 71.0 62.0 50.1

A bigger size of the set S(k) results in fewer calls to pri-
mality test . We design S(k) as big as posssible. However,
the bigger size of S(k) will increase storage space and cost
more time to process for the sieve procedure.

One of the most used sieve methods is the division
method[7],[8].As shown in Algorithm D.The prime finding
algorithm using the trial division method.

Algorithm D: Prime finding algorithm using trail division

1: Choose a set S(k),Pick a random n-bit odd number
g and let ¢(® =¢,i =0
2: Let w](.i)zq(i) mod p; If w§i)=0, for any j,

1<j<k,goto4
3: If T(¢*)) =TRUE,output ¢(*) and halt
4: qUtY) = ¢ 4 2di =i + 1,goto 2

The modular reduction operation of the trial division algo-
rithm is shown on step 2 of Algorithm D (w](-i) =¢(") mod
pj). If gUi+1) =¢() 42 and wg.i) =q(i)modp,thenw§-i+1)
=w§-i)+2 mod p.

The computation of w'i*+!) uses two 8-bit operands, re-
sulting in a performance much faster than modular reduc-
tion operations.The algorithm as shown in Algorithm E.
In the algorithm of Algorithm E require to keep all the
residures wgi) of the previous iteration.

Algorithm E: Prime finding algorithm using table look-
up

1: Choose a set S(k).Pck a random n-bit odd number ¢
and let ¢(®) =¢,i=0

Compute wj(.o) =¢® mod p;,1 <j<k

If w§i) = 0,for any j, 1 < j < k,goto 5

If T(¢'Y) =TRUE,output ¢*) and halt

wl+) = () +2mod p;,1 <j <k

gt = ¢V 4245 =i 4+ 1,goto 3

The bit-array algorithm will find a probable prime if
there is one in the chosen interval.If there is no probable
prime on the chosen interval ,one can either random choose
another odd ¢ and let ¢(°) = ¢.The bit algorithm is shown
in Algorithm F.

Algorithm F:Prime finding algorithm using bit arrray

1: Seta;=0for0<i<]—-1;
2: Pick a random n-bit odd number ¢ and let ¢(®)=
g5 =0
3: for each pj;, do
a.Compute w;.O)
b.Compute g(p;)
4: B =By
a.If(a; = 0) and (T(¢'¥)=TRUE),
output ¢(?) and halt
b.gli+1) = ()42
¢.¢(® = ¢() i=0,goto 3

= ¢(©4modp;

D. Fast Implementaton of Probabilistic Primality Tests

Modular exponentiations are the most computing expen-
sive operations of probabilistic primality test algorithms.
In this implementation ,computing B = A¥ mod M,FE is
represented byE = [e;_1..€9] with e;_1 = 1 .As shown in
Algorithm G.

Algorithm G: Algorithm to compute B = AF mod M
1: Bp_1=A4;

2: fori=k—1to-,do
a.P; = B; * B; mod M;
b.if e; = 1 then B;,; = P; * A mod M;
c.else B;11 = F;;

3: B= B()

A smartcard crypto coprocessor implements the modular
multiplication using n-bit multiplicand and m-bit multipli-
cation. We can achieve the better speed from the calcula-
tion of step 2.b on Algorithm G. Using 2 as the witness can
result in 33randomly picked up witness.

From crypto co-processor in Infineon SLE66CX160S sup-
ports two modes of operation:long mode for up to 1120-bit
long operations number,and short mode for up to 560-bit
long operations number.As a result,both the module and
exponent are 512-bit long and witness is 2, the excuting
time is 110 ms for the short mode and 220 ms for the long
mode.

E. Timing

Most cost part of an RSA key generation is the prime
finding procedure.The optimization on the performance of
the prime finding algorithm is the sieve algorithm.See Table
3 shown the overhead on using the sieve algorithm.

The performance shown in Table 3,using 400 example
measurements as each sieve implementaion.

Table 3. Overhead of sieve procedures using different

algortihm
Different Memory Space | 512-bit | 1024-bit
algorithm used (sec) (sec)
Trail division | 53 bytes code 2.00 20.00
S(256)
Table look-up | 53 bytes code 0.20 0.80
S(256)
Bit array 53 bytes code 0.11 0.17
S(256) 128 bytes RAM
Bit array 93 bytes code 0.15 0.26
S(512) 128 bytes RAM

IV. KEY PAIR GENERATION

Finding the public key and private key after finding
the prime numbers is trival.A very common method for
finding modular inverse is the extend Euclidean algo-
rithm.[7]Finding the public key and private key after find-
ing the prime numbers is trival.From the extended Eu-
cldidean Algorithm,shown in Algorithm G, the overtime
to find a 1024-bit RSA key pair is less than 11 seconds
with table look-up algorithm S(256)

Algorithm H: Euclid’s extended algorithm for computing
inverses

1: Compute m = (p—1)(g —1);
2: Let g =m,g1 =e,ug =199 =0,u; =0,v; =1,2 =1;

o

While g; # 0
a.y 1= g;—1 div g;;
b.giy1:=gi—1 — Y *gi;
CUjp1 = Uj—1 — Y * Us;
d.’UH_l = Vi1 — Y X U4
et=1+4+1;
T 1= Ui-1;
If x = o0 Then inv=z else inv=x + m;
Output inv

V. RELATED WORK AND CONCLUSION

We detailly descript the steps on optimizing the perfor-

mance of RSA key generation in smartcards.The on-card
key generation problem is that a large prime finding prob-
lem.This paper we propose a protype for fast prime finding
algorithms.And we also build fast implementation for the
algorithm in smartcard with crypto-coprossor using Infi-
neon SLE66CX160S microcontroller. As this paper shown
that the algorithms presented are more efficient and space
saving than other algorithms.It is suitable for on-card RSA
key generation.

REFERENCES

Chung-Hung Yang , Hikaru Morita and Tatsuaki Okamoto,
“Fast Implementation of Digital signature on Smartcards with-
out coprocessor,” Communication of the IIMA, vol. 2, no. 2, pp.
82-90, Oct. 2002.

Chan,S. C. “An overview of Smart card Security,”
http://www.hkstar.com/ alanchan/papers/smartCardSecurity/
Rivest, R., Shamit, A. and Adleman, L., “A Method for Obtain-
ing digital Signatures and Public Key Cryptosystems,” commu-
nications of ACM, vol. 21, no. 2, pp.158-164 , Feb. 1978.
Chenghuai Lu, Andre L.M. dos Santos and Francisco R. Pi-
mentel, “Implementation of Fast Key Generation on Smart
Cards,” Proceedings of the 2002 ACM symposium on applied
computing,Mar. 2002.

Joye, M., Palliar, P. and Vandeney, S. Efficient Generation of
Prime numbers, CHES 2000, 340-354.

knuth, D.E.; “The Art of Computer Programming Seminumerial
Algorithms of Computer Science and Information Processing,”
Addison-wesley, 3rd ed., Vol.2,1997.

Stallings, W., cryptography and Network Security:principle and
practice, 2nd ed., Prentice-Hall , New Jersey, 1999.

Bressoud, D. M., Factorizations and Primality Testing,
Springer-Verlag, New York, 1989.

