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The use of FFT’s and other algorithms for fast
Elliptic Curve operations

C. Dreyer

Abstract— Over the past few years there has been a lot of
research into public key cryptography. In recent years El-
liptic Curve Cryptography (ECC) has become increasingly
attractive due to the relatively small key sizes (as opposed
to RSA for example). This paper gives an overview of some
of the basic principles of ECC and then presents some well
known, as well as some not-so-well known algorithms for
computations that can speed up Elliptic Curve operations.
The paper ends with a short overview of attacks on cryp-
tosystems and attempts to give pointers on how to avoid
Simple Power Attacks (SPA’s) and Differential Power At-
tacks (DPA’s).

I. Introduction

Since their introduction around 1985 by Koblitz and
Miller, there has been a wealth of new research conducted
into the feasibility of using elliptic curves as a tool for cryp-
tography. Many papers have been written on this subject,
and many advances have been made. This paper attempts
to give an overview of some of these advances and also to
bring to light methods that have not received much atten-
tion. Section 2 of this paper gives some mathematical back-
ground upon which elliptic curve cryptography is based.
From Section 3 onwards we discuss methods of speeding
up computations of Elliptic curves. Section 3 discusses
some multiplication methods that help speed up computa-
tions on elliptic curves (scalar computation is done a lot in
ECC, and so it makes sense to try to speed up this portion
of the process). Section 4 discusses how choosing a good
elliptic curve helps speed up computations. Section 5 deals
with the use of the Fast Fourier Transform (FFT) in com-
putations, and section 6 ends with a survey of attacks that
an ECC implementation should expect, and how to thwart
these attacks.

II. Definitions for Finite Fields, Elliptic curves,
and Fourier Transforms

In this section we introduce the unfamiliar reader to
some of the terminology, definitions and theorems asso-
ciated with finite fields and elliptic curves. Those readers
who already have a basic knowledge may wish to skip this
section, but may at the same time benefit from notational
definitions. For a more thorough development of Finite
Field theory see [1] and also [2].

A. Finite fields

Definition (Group): A group, G, is a non-empty set
with the following properties:
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(i) (ab)c = a(bc) for all a,b,c in G.
(ii) There exists an element e in G, with ea = ae = a for

all a in G.
(iii) For each a in G, there exists b in G such that ab =

ba = e.
Definition (Abelian group): A group, G, is Abelian

if ab = ba for a,b in G.
Definition (Ring): A ring is a non-empty set, R, with

two binary compositions (for example addition and multi-
plication) defined on it. The ring must satisfy

(i) R is Abelian wrt the additive composition.
(ii) Multiplication in R is associative.
(iii) Both the distributive laws : a(b+c) = ab + ac and

(a+b)c = ac + bc hold.
Definition (Field): A Field, is a set with at least two

elements with two compositions defined on it.
Definition (Galois field): A Galois field and a finite

field are synonymous. A finite field is simply a field with a
finite number of elements.

Definition (F*): F* is the set of all non-zero elements
of F. ie F* = F - 0.

Definition (Characteristic of F): The characteristic
of a field F is the number of times we can add 1 onto the
current number until the modulus reduces this number to
zero. The characteristic of a non-finite field (F ⊇ rational
numbers) is defined to be zero.

B. Elliptic Curves

Definition (Elliptic Curve): An elliptic curve is de-
fined as a set of 2-dimensional coordinates (x,y) which form
a solution set to the bivariate cubic equation:

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

over a field F. If the characteristic of F is not 2 or 3, then
one can transform the above equation into:

y2 = x3 + ax + b
a,b element of F.
If F is a Galois field, GF(2n), with characteristic 2, then

we can reduce the bivariate cubic equation to:
y2 + xy = x3 + ax2 + b
The set of points (x,y) on the elliptic curve, as well as

the point at infinity (by definition), denoted infinity, form
an Abelian group. To be an Abelian group, the set must
satisfy the conditions of the definition. We define addition
over F as follows:

For char(F) not equal to 2 or 3:
Let P = (x1, y1) not equal to infinity and Q = (x2, y2)

be points on the elliptic curve. Denote inverse of P by -P
= (x1, -y1) not equal to Q. Then the sum of P + Q = (x3,
y3) can be calculated from the following formulas:
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x3 = λ2 − x1 − x2

y3 = λ(x1 − x3)− y1)
λ = y2−y1

x2−x1
if P 6= Q

= 3x2
1+a

2y1
if P = Q

To subtract Q - P, simply add the inverse of P to Q.
For char(F) = 2:
Let P = (x1, y1) not equal to infinity be a point on the

elliptic curve, and define it’s inverse by -P=(x1, x1 + y1).
Let Q = (x2, y2) be a second point with Q not equal to -P.
The sum of P and Q, P+Q = (x3, y3), can then be found
from:

for P 6= Q:
x3 = λ2 + λ + x1 + x2 + a

y3 = λ(x1x3) + x3 + y1

λ = y1+y2
x1+x2

for P = Q:
x3 = λ2 + λ + a

y3 = x2
1 + (λ + 1)x3

λ = x1 + y1
x1

For information on how elliptic curve cryptography
(ECC) works, security of ECC, and some information on
the basics of hardware and software implementations the
reader is encouraged to read [3].

C. Fourier Transforms

Definition (Fourier Transform): The Fourier Trans-
form of a function, denoted F(X), is defined as:

F(X) = X(ω) =
∫ −∞
∞ f(x)e−jωt dt.

Definition (DFT): The Discrete Fourier Transform of a
set of numbers is defined by: Xk =

∑N−1
n=0 x[n]e−j2πkn/N .

The computation of the DFT of a set of N numbers, re-
quires N2 multiplications.

Definition (Nth root of unity): The Nth root of
unity, denoted ωn, is defined by: ωn = ej2πk/2n = ωn.

Definition (Fourier Transform (again)): We can
write the Fourier Transform in the following form:

F(X) = (X0, X1, ..., X2N−1) and can compute the X ′
ks

by : Xk =
∑2N−1

n=0 xnωnk

Definition (FFT): The Fast Fourier Transform is an
algorithm which can compute the DFT of a set in Nlog2N
multiplications. The mechanism by which this is done is
based on the fact that two numbers being multiplied (or
in Signal Processing lingo ”convolved”), can each be split
in half recursively and then multiplied. Basically, we can
rewrite the Fourier coefficients by:

Xk =
∑N−1

n=0 x2n(ω2)kn + ωk
∑2N−1

n=0 x2n+1(ω2)kn

In other words, find the Xk coefficients by splitting the
set x into two parts:

a = (x0, x2, x4, ..., x2n−2) and b = (x1, x3, x5, ..., x2n−1)
Next, compute the Fourier Transform of a (Ak) and b

(Bk). Finally deduce the Fourier Transform, Xk, using the
formulas:

Xk = Ak + ωkBk

X(N/2)+k = Ak − ωkBk

(For a derivation, see [4]).

III. Multiplication on elliptic curves

The speed of scalar multiplication of a point P on an
elliptic curve is of paramount importance since this is a
fundamental operation on elliptic curves which is executed
relatively often compared to other operations. Scalar mul-
tiplication on points in an elliptic curve group is analo-
gous to exponentiation in a multiplicative group. There
are many ways of computing the scalar product kP, the
easiest of which is the double-and-add algorithm. There
are a number of other algorithms which are generally ei-
ther more efficient or faster. Often one must choose one of
the elements in this tradeoff - a faster algorithm, or an al-
gorithm that takes up more memory. The algorithm choice
is thus implementation dependent.

[5] gives an implementation which allows fast multiplica-
tion without doing any precomputation. This is a desirable
feature in implementations such as cellular phones, MP3
players, or smart cards where memory and speed are both
at a premium. Their algorithm looks like this:
Algorithm
Input: Integer k ≥ 0 and point P = (x, y)εF
Output: Q = kP

1: if k = 0 or x = 0 then output (0,0) and stop
2: Set k ← (kl−1...k1k0)2
3: Set X1 ← x, Z1 ← 1, X2 ← x4 + b, Z2 ← x2

4: for i from l-2 downto 0 do
if ki = 1 then

Madd(X1, Z2, X2, Z1), Mdouble(X2, Z2)
else

Madd(X2, Z2, X1, Z1), Mdouble(X1, Z1)
5: return Q = Mxy(X1, Z1, X2, Z2)

For multiplication algorithms related to RSA, the reader
is referred to [6], and for multiplication algorithms for ECC,
see [7].

IV. Elliptic Curve selection

Since so many of the computations for ECC require
scalar multiplication, this area has received a lot of at-
tention. Not so much attention, however, has been given
to the choice of elliptic curve. Choosing a suitable elliptic
curve can be very beneficial, because certain elliptic curves
have properties that make scalar multiplication easier and
faster.

In [8] this issue of Elliptic Curve choice (particularly
curves of prime order) is examined. The authors precal-
culate class polynomials as a separate off-line process, and
then choose a discriminant, after which they begin to search
for primes (traditionally primes are chosen first, and dis-
criminants found later).

The authors use a variant of the complex curve genera-
tion algorithm, which allows them to construct and store
the class polynomial, and then to search for primes whose
Complex Multiplication (CM) discriminants are in the set.
Their algorithm is as follows:
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1. Off-line: Determine a set δ of CM discriminants with
correspondingly small class numbers.

2. Off-line: Calculate and store the class polynomials of
CM discriminants in δ.

3. Randomly select an element D of δ and obtain the
corresponding class polynomial HD(x).

4. Search for a prime number p satisfying the equation
4p = t2 + Ds2 (First select random t and s, and then de-
termine if p prime).

5. Compute u1 = p+1−t and u2 = p+1+t, the orders of
the elliptic curve candidates, and determine if either has an
admissible factorization. If not, go back to 4, else continue.

6. If u1 has proper factorization set u = q1, otherwise
u = q2.

7. Find a root j0 of HD(x) mod p (where j is the j-
invariant of the curve).

8. Set k = j0/(1728− j0)modp and the curve of order u1

or u2 will be:
ξc : y2 = x3 + ax + b
where a = 3kc2, b = kc3 and c ε Fp is chosen randomly.
9. Check the resultant curve’s order. If it is equal to u,

then stop. Otherwise, select a non-square number e ε Fp,
and calculate the twist by e, ξe(Fp) = x3 + ae2 + be3.

V. Multiplication using the Fast Fourier
Transform

The idea of all mathematical transforms in Electrical En-
gineering, is that one can transform a rather difficult, or
time consuming process into a simpler, faster process. In
the case of the Fourier and Laplace transforms this simpli-
fication comes from the fact that one can transform differ-
ential equations into simple algebraic equations, and con-
volution can be transformed into simple multiplication.

For multiplying two numbers together, we are not really
interested in convolution, but essentially this is what is
being done. To see this, consider the process by which we
multiply two numbers using the FFT:

Suppose we want to multiply together two numbers (x
and y) together, then

Step 1.
x = (x0, x1, x2, ..., x2N−1)
y = (y0, y1, y2, ..., y2N−1)

Note that if either x or y has more digits than the other
we ”pad” the smaller number with zeros. (i.e if x = 101
and y = 1101, then pad x with a single zero to get x =
0101)

Step 2.
Compute the FFT of x and y:
FFT (x) = Xk = (X0, X1, X2, ..., XN−1, 0, ..., 0)
FFT (y) = Yk = (Y0, Y1, Y2, ..., YN−1, 0, ..., 0)
Notice that the length of X and Y are double the

length of x and y respectively.
Step 3.

Compute the product Zk using your favorite method:
Zk = XkYk

where Zk = (Z0, Z1, Z2, ..., Z2n−1)
and Zi = XiYi (i.e. compute product point-wise)

Step 4.

Compute the inverse Fourier transform z, of Z.
IFFT (Z) = z = (z0, z1, z2, ..., z2N−1)
Notice that the length of z is the same as the length

of x and y. Step 5.
The product of x and y is then
z =

∑2N−1
n=0 znBn

Essentially what the above algorithm does is to take x
and y, transform them into the Fourier domain, then slide
them past one another multiplying at each point, and then
take the inverse Fourier transform of the result. This is
exactly the same concept of convolution being applied to
two signals.

VI. Errors incurred by using the FFT
multiplication algorithm

When the FFT multiplication algorithm is applied to
two numbers in a software environment, it is possible for
some error due to truncation to occur. In the application
of cryptography this sounds disastrous, but it turns out
that it’s not so bad. If we take the inverse transform of
the slightly erroneous result and then round each element
to the closest value, then this error is eliminated.

In a hardware environment, this will not occur provided
that there are enough registers to store the Fourier trans-
forms of x and y. Recall from the above algorithm that if
the larger of x and y has a length N, then the result of the
Fourier transform will require 2N registers.

For more information about FFT multiplication and er-
rors, see [9].

VII. Architectures for Elliptic Curve
Cryptosystems

There are many emerging architectures for systems dedi-
cated to elliptic curve cryptography. An example of such an
architecture is [10]. This article introduces an architecture
with an optimized bit-parallel squarer, digit-serial multi-
plier and two programmable processors. The system con-
sists of program memory, a main controller(MC), an arith-
metic control unit (ACU) and an arithmetic unit (AU).

The AU consists of a Least Significant Digit first (LSD)
multiplier, a bit-parallel squarer (that can square in one
clock cycle), a register file, an accumulator, and a zero
tester. The multiplier is responsible for field additions,
squares, multiplications and inversions.

Using this simple architecture, the authors reported
speed results of at least 19 times faster than any docu-
mented hardware implementation, and at least 37 times
faster than any documented software implementation.

Also of interest is [11] which gives an overview of an
implementation utilizing a Samsung CalmRISC microcon-
troller with a MAC2424 coprocessor. The beauty of this
implementation is that it can process most instructions in
only one clock cycle.

The authors tested three different implementations for
field multiplication and squaring: Karatsuba-Offman, (see
[2]), column major method, and row major method. They
used a slightly improved version of the Bailey-Paar inver-
sion algorithm for field inversion. Using these methods,
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Fig. 1. Scalable EC architecture with FFT chip

they were able to implement elliptic curve exponentiation
in 122ms for a 50ns clock cycle.

Recently Motorolla released their own cryptochip. The
Motorolla MPC185 is a very versatile chip which can run
many different types of algorithms. For more information,
see Motorolla’s website at [12].

The reader may now wonder, how can one implement
an Elliptic Curve Arithmetic Unit (AU) using the Fourier
Transform algorithm for fast multiplication. There are of
course many ways to accomplish this task. A possible im-
plementation is to use a Spiffee ULP FFT chip. This chip,
designed by Stanford University, is ideal for implementa-
tions like cell phones and smart cards because it runs on a
0.4 V power supply, with a mere 8mW of power consump-
tion, and runs at 85 MHz. See Table 1 for a comparison
of some competing FFT chips. For more comparisons, see
[13].

Table 1: Comparison of FFT chips.

Chip Voltage Power Clock
Spiffee ULP 0.4 V 8 mW 85 MHz

DSP-24 3.3 V 3500 mW 100 MHz
DoubleBW 3.3 V 8000 mW 128 MHz
C40 (TI) 5 V 4500 mW 60 MHz

It would also be desirable to follow the example of [10],
because their layout is ”scalable”. The architecture of our
device would look somewhat like Fig 1.

The only difference between Fig 1 and [10]’s implemen-
tation is the added FFT chip which computes the FFT of
x and y which the AUC (Arithmetic Unit Controller) tells
the AU (Arithmetic Unit) to send to it. The FFT chip then
sends the FFT of the number back to the AU, which does
the multiplication. The AUC then tells the AU to send the
result back to the FFT chip which computes the inverse
FFT. The FFT chip then sends the result back to the AU
and the controlling program then receives this value.

Using this implementation, we can project fairly good
speeds of computation. For a comparison of computation
time (in microseconds) to the number of bits of numbers
being multiplied, see Graph1.

VIII. The Hartley Transform

The Hartley Transform is another transform, much like
the Fourier Transform. It differs from the Fourier Trans-
form in that the Hartley Transform produces a real output
given a real input, and is its own inverse. This means that

Fig. 2. Computation time versus number of bits

multiplications with the Hartley Transform require no in-
verse transform of the result. This is a very useful property.
The discrete Hartley transform is defined by:

H[n] = 1√
N

∑N−1
n=0 xn[cos( 2πkn

N )− sin( 2πkn
N )]

as presented in [14].

IX. Power attacks on Elliptic Curve
Cryptosystems

Like any system that involves money, there will always
be people who wish to defeat the security of the system in
order to gain access to it. It is thus extremely important to
keep in mind that when you build a cryptosystem, you do
not only need to protect the data, but also the cryptosys-
tem itself. Over the years designers have come to realize
this very real danger, and have begun to design their sys-
tems to protect both data and the system itself. In order to
test the reliability of the system a number of attacks have
been designed to attempt to defeat the system’s security.

(i) Simple Power Attack (SPA): This attack is based on
the fact that by looking at the power consumption of a
cryptosystem one can guess what operation the system is
performing, and thus find ways to compromise the system’s
internal security features.

(ii) Differential Power Analysis (DPA): This is an ex-
tremely powerful attack that consists of statistical analysis
of the power consumption of a cryptosystem. It is possible
to find the secret key in a cryptosystem by DPA in as few
as 1000 encryptions.

In order to make a cryptosystem resistant to SPA, one
should ensure that the algorithms do not depend on the
data being processed (for example, branches in programs
should not be initiated by particular data).

To immunize a cryptosystem against DPA is a more diffi-
cult task. One can do various things to increase the number
of encryptions before the key is extracted, but with enough
time, the key probably can be extracted. The trick is to
make it infeasible to do this (i.e. make it take 1000 years
or so to extract). [15] gives a few ways that one can do
this:

(i) Let ]E be the number of points on the curve. Select
a random d of n bits (d=20 is sufficient). Compute k′ =
k + d ∗ ]E. Compute k’P = kP since ]EP =∞.

(ii) ”Blind” out P by adding a secret, random point, R,
for which we know S = kR. Do scalar multiplication by
k(R+P) and then subtract S = kR from this result to get
Q = kP.
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(iii) Randomize the projective coordinate.
See [15] for a more in-depth discussion of both the prob-

lems and solutions to cryptosystem security.

X. Conclusion

As [16] says, few algorithms are as elegant, as technologi-
cally advanced, or as dramatically different from the norm,
as the use of the Fast Fourier Transform for multiplication.

We have shown that the FFT is a fast algorithm for
implementing multiplication on elliptic curves, and is rela-
tively easy to integrate into an existing architecture.

We have also tried to show that this process should be
scrutinized during design because the cryptosystem may be
attacked, and should not fail during an attack.

Elliptic Curve cryptography may very well be the cryp-
tographic algorithm of choice for the 21st century, and the
FFT may be a significant aid in this process.
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