
Various Implementations of Blum Blum Shub
Pseudo-Random Sequence Generator

Kaustubh Gawande
Department of Electrical Engineering

and Computer Science
Oregon State University
Corvallis, Oregon, 97330

Email: gawande@cs.orst.edu

Maithily Mundle
Department of Electrical Engineering

and Computer Science
Oregon State University
Corvallis, Oregon, 97330

Email: mundle@cs.orst.edu

Abstract— Two types of BBS Pseudo-random sequence gen-
erators are presented and their relative strengths in terms
of their predictability is discussed. We survey the following
implementations of x2 mod N generator, presented by Blum,
Blum and Shub:

1) Efficient and Secure Implementation of BBS Pseudo-
Random Number Generator

2) Fast Blum-Blum-Shub Sequence Generation Using Mont-
gomery Multiplication

3) A software implementation of BBSx2 mod N generator in
Java.

I. I NTRODUCTION

Ideally, a Pseudo Random Sequence generator should
quickly produce long sequences of bits from short seeds. These
sequences should appear to be generated by successive flips of
coin. An important property of coin tosses is unpredictability.
Pseudo-Random Sequence Generators should be unpredictable
to computers with feasible resources. Pseudo-Random Se-
quence generator is said to be polynomial-time unpredictable
(Unpredictable to the right and to the left) [1] if and only if for
every finite initial segment of sequence that has been produced
by such a generator, but with any element (The rightmost or
leftmost element) deleted from the segment, a probabilistic
Turing Machine can do no better in guessing in polynomial
(Polynomial in the length of the seed) time what the missing
element is than by flipping a fair coin.

A lot of research has been done in this field and people have
come up with different Pseudo-Random Sequence Generators.
Blum, Blum and Shub have presented two Pseudo-Random
Sequence Generators [2]. The 1/P generator is completely
predictable, whereas thex2 mod N generator, under a certain
intractability assumption, is unpredictable in a precise sense
[2]. But, x2 mod N generator is not very efficient. This paper
surveys some of the efficient and secure implementations of
x2 mod N generator.

II. A SIMPLE UNPREDICTABLE PSEUDO-RANDOM

NUMBER GENERATOR

Blum, Blum and Shub have presented two pseudo-random
number sequence generators and discussed their properties [2].
They are,

1) the 1/P generator
2) thex2 mod N generator

There are significant similarities in the two generators. For
e.g.: Each quickly generates long well-distributed sequences
from short seeds. Also both generators contain hard problems
at their core - the 1/P generator is based on the discrete
logarithm problem and thex2 mod N generator is based on
the quadratic residuacity problem. What is most interesting is
in spite of their similarities; only the second is unpredictable
- assuming a certain intractability hypothesis.

The 1/P generator has been well studied in the history of
number theory [3] and also as a random number generator
[Knuth]. However [2] have come up with new and surprising
results concerning its interference properties. Thex2 mod N
generator, on the other hand, is an outgrowth of the coin-
flipping protocol of [4]. It derives its strong security properties
from complexity based number theoretic assumptions and ar-
guments [4], [5], [6]. Blum, Blum and Shub have investigated
and revealed additional useful properties of this generator like:
From knowledge of the secret factorization of N, one can
generate the sequence backwards; from additional information
of N, one can even random access the sequence.

Both generators have applications. The 1/P generator has
applications to the generations of generalized de Bruijn (i.e.
maximum-length shift register) sequences. Thex2modN gen-
erator has applications to public key cryptography (Quadratic
Residue Cipher) as explained in Section [Fast BBS Sequence
Generation using MM].

A. The 1/P Generator:

Fix an integer b> 1 and let
∑

= {0, 1, ..., b− 1}.
DEFINITION (1/P generator (base b)):To define the seed

space, letN = {integers P>1 relatively prime to b} be the

parameter values, and let the seed domain X be the disjoint
union

⋃
P∈N Z∗

P . We can, and sometimes do, identify X
with the dense subset{r / P|P ∈ N, r ∈ Z∗

P } of the unit
interval [0,1]. Let µn be the distribution onXn given by
µn(P, r) = un(P) ∗ vp(r), where un is the uniform proba-
bility distribution on {P ∈ N ‖ P |b = n} and vp is the
uniform distribution onZ∗

P . Then U ={µn} is an accessible
probability distribution on X.

Recall thatZ∗
N = { integers x| 0 < x < N and gcd(x,N) = 1}

is a multiplicative group of orderΨ(N). If P is prime, then
Z∗

P = {1, 2, , P-1} is cyclic. For each N, we consider
Z∗

N ⊂ {0,1}n via the natural distribution.

Example: Let the base b=10, and let P=7 and r=1. The
pseudo-random sequence generated by the 1/P generator
(base 10) with input 1/7 is 142857142.Note that 10 is a
primitive root mod 7 (i.e. a generator of the cyclic group
Z∗

7) and that the period of this sequence is 7-1 = 6. (Please
see [BBS - Theorem 1 for details])[2]. From the state
space point of view, the orbit of 1/7 under T is: 1/7, 3/7,
2/7, 6/7, 4/7, 5/7, 1/7, and so, b0=1 (since 1/7∈ [1/10,
2/10]), b1=4 (since 3/7∈[4/10, 5/10]), b2 = 2, b3 = 8, b4 = 5,

B. The generatorx2 mod N:

DEFINITION [x2 mod N generator]:Let N={integers N|N
= P*Q, such that P,Q are equal length (|P|=|Q|) distinct primes
3 mod 4} be the set of parameter values. For N∈ N, let
XN = {x2modN | x ∈ Z∗

N} be the quadratic residues mod
N. Let X = disjoint

⋃
N∈N XN be the seed domain.

Example: Let N=7*19 = 133 and x0=4.Then the sequence
x0, x1 = x2

0 mod 133, has period 6, where x0, x1 , , x5, . = 4,
16, 123, 100, 25, 93, . So b0 b1 b5 = 0 0 1 0 1 1 The latter
string of b’s is the pseudo-random sequence generated by the
x2 mod N generator with input (133, 4). Here,λ(N) = 18 and
λ(λ(N)) = 6.

C. Predictability of BBS Generators:

1) The 1/P generator is predictable: Let P and b be rela-
tively prime integers> 1 and r0 an integer in the range 0
< r0 < P. Denote the expansion onr0/P to base b by

r0/P = .q1q2q3

where 0≤ qi ≤ b. Since b is prime to P, the expansion is
periodic. Then m = 0,

(bm ∗ r0)/P = q1qm.qm+1qm+2... = (q1....qm) + rm/P

where,

0 < rm/P = .qm+1qm+2..... = (bm ∗ r0/P)mod1 < 1.

Here q1, q2,... are (quotient) digits base b andq1q2q3...
denotes their concatenation, whereasrm, the mth remainder
(of r0 / P base b), is an integer whose length (base b) is less
or equal to the length of P:| rm |b≤| P |, where| P | denotes
| P |b.

Then, the following problems are solvable in polynomial
(| P |)-time [2]. (For proofs refer to [2]).

Problem 1:
Input: b, remainderrm, positive integer k≤ poly (| P |).
Output:rm−1, rm+k; qmqm+1...qm+k.

Problem 2:
Input: b, | P | successive digits of quotient

qm+1....qm+|P |
Output:rm

Problem 3:
Input: b, rm, rm+1suchthatrm ∗ b 6= rm+1

Output: P

Problem 4:
Input: b, k quotient digits,qmqm+1....qm+k, where

k = logb(2P 2) and m is arbitrary
Output: P,rm

Hence, the 1/P generator yields a poor pseudo-random
sequence: from knowledge of P and any| P |-long segment of
the expansion ofr0 / P base b, one can efficiently extend the
segment backwards and forwards. Moreover, from the knowl-
edge of 2| P | + 1 successive elements of the sequence, but
not P, one can efficiently reconstruct P, and hence efficiently
continue the sequence in either direction. So, the 1/P generator
is predictable.

2) Thex2 mod n generator is unpredictable: Blum, Blum
and Shub proved that thex2 mod n generator is polynomial-
time unpredictable [2]. (For proofs refer to [2]).They in-
vestigated what properties can be inferred about sequences
produced by thex2 mod n generator, given varying amounts
of information.

Let N = P * Q, where P, Q are distinct primes both congruent
to 3 mod 4. Alsoxi is a quadratic residue mod N,xi+1 = x2

i

mod N andbi = parity (xi).
1. Knowledge of N is sufficient to efficiently generate

sequencesx0, x1, x2, ... and hence the sequencesb0b1b2...
in the forward direction, starting from any given seedx0.
The number of steps per output is©(| N |1+ε) using fast
multiplication.

2. Given N, the factors of N are necessary and sufficient
to efficiently generate thex2 mod n sequences in the reverse
direction,x0, x1, x2,..., starting from the given seedx0.

3. The factors of N are necessary- assuming they are
necessary for deciding quadratic residuosity of an x inZ∗

N (+1)
- to have evenε-advantage in guessing in polynomial time the
parity of x−1, given N andx0 chosen at random from ORN ,
it is sufficient to choose x at random fromZ∗

N and square it
mod N.

Blum, Blum and Shub proved thatx2 mod n generator is
unpredictable [2].

D. Advantages of BBSx2 mod n generator:

An interesting characteristic of this generator is that you
can directly calculate any of the x values. In particular,

xi = (x(2i(mod((P−1)∗(Q−1))))
0)(modN)

This means that in applications where many keys are
generated in this fashion, it is not necessary to save them all.
Each key can be effectively indexed and recovered from that
small index and the initial x and N.

E. Disadvantages of BBSx2 mod n generator:

Its only disadvantage is that it is computationally intensive.
It takesn2 steps to generate one random bit of the bit-stream.
This is not a serious draw back if it is used for moderately
infrequent purposes, such as generating session keys.

III. EFFICIENT AND SECURE I MPLEMENTATION OF BBS
PSEUDO-RANDOM NUMBER GENERATOR

There has been a lot of interest in provably good pseudo-
random generators [2], [1], [6], [7]. In spite of the fact that all
the generators proposed by these people pass all probabilistic
polynomial time statistical tests, they are still inefficient.
Vazirani and Vazirani proposed an efficient and secure pseudo-
random number generator [8].

Vazirani and Vazirani used a variant of BBS generator to
prove their theorems [8]. This variant of BBS generator out-
puts bi = location (xi), where location(x) = 0 if x< (N-1)/2
and 1 if x≥ (N-1)/2. The cryptographic security of this
generator was also based on quadratic residuosity. However the
generator which extracts parity as well as location at each stage
may not be cryptographically secure, because revealing parity
(xi) may make location (xi) predictable. Blum, Blum and Shub
conjectured that this generator is also cryptographically secure
and asked the open problem: how many bits can be extracted
at each stage, maintaining cryptographic security? [2].

Vazirani and Vazirani proved the conjuncture and also
answered the open problem by giving a simple condition,
the XOR-Condition [8]. They proved that log n bits, where
n = | N |, can be extracted at each stage from any generator
satisfying this condition. (For proofs refer to [8]).

IV. FAST BLUM -BLUM -SHUB SEQUENCE GENERATION

USING M ONTGOMERY M ULTIPLICATION

Parker, Kemp and Shepherd have proposed VLSI mod-
ules for fast, efficient generation of high-throughput Blum-
Blum-Shub (BBS) and BBS-like sequences using Montgomery
Multiplication, where post-processing associated with Mont-
gomery’s algorithm can be eliminated [9].

A. Quadratic Residue Cipher and BBS:

Public key cryptosystems ensure secrecy between commu-
nicating parties without the need to distribute secret keys.
Quadratic Residue Cipher (QRC) is a lesser-known public key
cryptosystem introduced by Blum, Blum, and Shub [2], which
relies on the ease of squaring an integer, mod n, as compared
to the intractability of finding the square root of a number,
mod n when n is large.

B. QRC v/s RSA:

Just like RSA [10], this scheme relies on the inability
to factor n when n = p*q, and p and q are large strong
primes. The advantages of QRC over RSA are that RSA is
a deterministic cipher, whereas QRC is probabilistic because
it starts from a randomly chosen seed. Moreover it is known
that RSA can leak partial information about the message sent,
whereas no such weakness is known for QRC. Also it is a bit
easier to generate BBS for QRC, than successive exponents for
RSA. QRC can also provide digital signature and resistance
to a chosen cipher text attack, but at greater cost than with
RSA [11]. Detailed comparisons of QRC and RSA are given
in [11], [12], [13]. Although implementation complexity of
QRC is slightly less than RSA, it is still costly. Successful
implementation of QRC relies on efficient generation of BBS.

C. BBS using MM (Montgomery Multiplication):

Parker, Kemp and Shepherd propose novel hardware to
allow highly efficient generation of BBS using Montgomery
Multipliers (MMs) [14], [15], [16], [17]. MMs are particularly
suited to VLSI implementation of modular multiplication as
they allow computation of modular reduction to begin before
computation of the most-significant-bit has been completed.
This speeds up successive modular arithmetic operations (such
as squaring). However the drawback is the multiplicative offset
associated with MM. In their paper, this offset is incorporated
into BBS generation without cost, and further simplification
is made possible by considering the generation of BBS-like
sequences.

The authors conclude by saying that Montgomery Mul-
tiplication (MM) is appropriate for fast generation of BBS
sequences in spite of the constant multiplicative offset inherent
within successive squaring using MM. Post-processing asso-
ciated with MM is taken out of the squaring loop to occur
in parallel with the squaring. Further area/time savings are
achieved by retaining the multiplicative offset to the BBS
Sequence whilst ensuring each member of the sequence is less
than the modulus. High-throughput sequence generation is ob-
tained using interleaved squaring and fully parallel MM. The
authors also suggest that one could eliminate post-processing
completely by some other simple enhancements [9].

V. SOFTWARE IMPLEMENTATION OF BBS x2 MOD N

GENERATOR

We studied the software implementation of the BBSx2

mod n generator by David Bishop [18]. It is implemented
using J2SE V1.4.1. The java.math package [19] which pro-
vides classes for performing arbitrary-precision integer arith-
metic (BigInteger) and arbitrary-precision decimal arithmetic
(BigDecimal) is used. A java applet acts as the interface to
this pseudo-random number generator.

VI. CONCLUSION

Generating a secure, fast and efficient Pseudo- random num-
ber generator (PRNG) has been a challenge to Cryptologists,
Computer Scientists, Computer Engineers and Mathematicians
for several decades. The Pseudo-Random Number Generator
proposed by Blum, Blum and Shub is a cryptographically
strong random number generator that has many interesting
applications [BBS], especially in the field of Public Key
Cryptography. By proving that the random number generator
proposed by Blum, Blum and Shub is secure and efficient,
Varizani and Vazirani opened the doors to implementing such
a generator - a PRNG that can be successfully used in real
life cryptography solutions [Vazirani]. Montgomery Multipli-
cation has several interesting applications in Cryptography
and building a Quadratic Residue Cipher, based on BBS that
uses Montgomery Multiplication (MM), Parker, Kemp and
Shepherd have proved that when put together BBS and MM
can help us build a PRNG that is not only secure and efficient
but also fast [9]. Our implementation of BBS in Java further
establishes that it is very simple to implement a secure, fast
and efficient PRNG.

REFERENCES

[1] M. Blum and S. Micali, “How to generate cryptographically strong
sequences of pseudo-random bits,” 1982, pp. 112–117.

[2] L. Blum, M. Blum, and M.Shub, “A simple unpredictable pseudo-
random number generator,”SIAM Journal on Computing, vol. 15, no. 2,
pp. 364–383, May 1986.

[3] L. Dickson, “History of the theory of numbers,”Chelsea Pub. Co., 1919.
[4] M. Blum, “Coin flipping by telephone,” 1982, pp. 133–137.
[5] S. Goldwasser and S. Micali, “Probabilistic encryption and how to play

mental poker keeping secret all partial information,” 1982, pp. 365–377.
[6] A. Yao, “Theory and applications of trapdoor pseudo-random number

generators,” 1982, pp. 80–91.
[7] C. Schnorr and W. Alexi, “Rsa-bits are 0.5 + epsilon secure,”EURO-

CRYPT, 1984.
[8] U. V. Vazirani and V. V. Vazirani, “Efficient and secure pseudo-random

number generation,” 1984, pp. 458–463.
[9] M.G.Parker, A.H.Kemp, and S.J.Shepherd, “Fast blum-blum-shub se-

quence generation using montgomery multiplication,” vol. 147, 2000,
pp. 252–254.

[10] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital
signatures and public-key cryptosystems,”Communications of the ACM,
vol. 21, no. 2, pp. 120–126, Feb. 1978.

[11] F. Rubin, “The quadratic residue and double quadratic residue ciphers,”
Cryptologia, no. 3, pp. 275–284, 1995.

[12] S. J. Shepherd, P. W. Sanders, and C. T. Stockel, “The quadratic residue
cipher and some notes on implementation,”Cryptologia, no. 3, pp. 264–
282, 1993.

[13] S. J. Shepherd, A. H. Kemp, and S. K. Barton, “An efficient key
exchange protocol for cryptographically secure cdma systems,”Globe-
com’96, Nov. 1996.

[14] P. L. Montgomery, “Modular multiplication without trial divison,”Math-
ematical Computation, vol. 44, pp. 519–521, 1985.

[15] C. D. Walter, “Systolic modular multiplication,” vol. 42, 1993, pp. 376–
378.

[16] P. Kornerup, “A systolic, linear array multiplier for a class of right-shift
algorithms,” vol. 43, 1994, pp. 892–898.

[17] T. Blum and C. Paar, “Montgomery modular exponentiation on recon-
figurable hardware,” 1999.

[18] D. Bishop, “Random bit-stream generator/blum-blum-shub method.”
[Online]. Available: http://computerscience.jbpub.com/cryptography/

[19] Sun Microsystems, “JavaTM 2 Platform, Standard Edition, v 1.4.1
API Specification.” [Online]. Available:
http://java.sun.com/j2se/1.4.1/docs/api/

