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Analysis of Modular Inverse GF (p)
Implementations

Gerald Lai

Abstract— This paper examines several modular inverse
algorithms in GF (p) that have been proposed in literature.
A survey of these algorithms attempts to study the evolu-
tion of modular inversion methods and trace key areas of
improvement for hardware implementation efficiency.

I. Introduction

The heavy use of modular inversions in GF (p) for cryp-
tographic computations today is indisputable. Modular
inverse is essential for point operation computations on
elliptic curves defined over a finite field GF (p), for deci-
pherment operations of the RSA algorithm, for the Diffie-
Hellman key exchange method, for the acceleration of ex-
ponentiation operations using addition-subtraction chains
and for verifications of the Digital Signature Standard [1],
[2], [3], [4].

The classical definition of the modular inverse states that
the inverse of an integer a ∈ [1, p− 1] modulo p, is defined
as an integer r ∈ [1, p−1] such that a ·r ≡ 1 (mod p). This
translates to the equation

r = a−1 (mod p) (1)

Note that for an integer inverse to exist for a, a must be
relatively prime to p. Hence, the greatest common divisor
(GCD) of a and p must be equal to 1 or gcd(a, p) = 1. The
modulus p is usually chosen as a prime number to fulfill
this criterion.

Kaliski has modified the definition above to include a
Montgomery inverse version of the classical modular in-
verse [1], [2], [4]. This new version is based on the
Montgomery multiplication algorithm devised by P. Mont-
gomery in 1985. The new definition has the Montgomery
inverse of an integer a ∈ [1, p− 1] as b such that

b = a−12n (mod p) (2)

where p is relatively prime and n = dlog2 pe.
The method of actually computing the modular inverse

of an integer originated from one of the most basic algo-
rithms, known as the Euclidean algorithm. This algorithm
basically computes the GCD of two numbers.

Algorithm Euclidean
Input: integers a, b
Output: f = gcd(a, b)

1: while (b 6= 0)
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2: r = a (mod b)
3: a = b
4: b = r
4: return f = a

It was shown that for any integers a and b, the greatest
common divisor equation could be written in the form

gcd(a, b) = a · u + b · v (3)

where u and v are both integers that always exist.
Based on equation (3), the extension to the Euclidean

algorithm, known as the Extended Euclidean algorithm,
also computed the GCD of the two integers a and b, plus
an additional function to compute the integers u and v.

The special case of finding an inverse for the integer a
holds true when

gcd(a, b) = 1 (4)

and the whole equation is taken over (mod b). Hence, equa-
tions (3) and (4) can be rewritten as

a · u = 1− b · v ≡ 1 (mod b) (5)

The (−bv) term drops due to the modulus, leaving integer
u as the inverse of integer a (mod b).

The introduction of modular arithmetic to find the in-
verse of an integer allowed for realizable hardware imple-
mentation. As memory is finite in hardware, computations
bounded by a finite field become more favorable. However,
implementing the Extended Euclidean algorithm in hard-
ware requires integer division, which is a serial operation
that is very expensive in terms of hardware delay.

The integer division requirement problem can be solved
by modifying the Extended Euclidean algorithm based on
three observations [4]:

(i) If a and b are both even, gcd(a, b) = 2 · gcd(a/2, b/2)
(ii) If a is even and b is odd, gcd(a, b) = gcd(a/2, b)
(iii) If both a and b are odd, gcd(a, b) = gcd(|a− b|/2, b)

A division-free approach is provided by the Binary Ex-
tended Euclidean algorithm by substituting the integer di-
vision portion of the Extended Euclidean algorithm with
divisions by two, as shown from the observations above.
Divisions by two represent right shift operations in hard-
ware.

The Binary Extended Euclidean algorithm acts as the
base algorithm for the design of modular inverse hardware.
Further discussions on some of the work that have been
proposed to improve the efficiency of this algorithm will be
covered in the next few sections.
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II. Classical Euclidean Algorithms

The first algorithm shown below is the basic Extended
Euclidean algorithm (ExtEucdInv) that was derived with
some modifications to allow for easy hardware implemen-
tation [1]. The basic structure of the modified algorithm is
analogous to the Binary Extended Euclidean algorithm.

Algorithm ExtEucdInv (Extended Euclidean In-
verse)
Input: a ∈ [1, p− 1] and p
Output: r ∈ [1, p− 1] and k, where r = a−1 (mod p) and
n ≤ k ≤ 2n

1: u := p, v := a, r := 0, s := 1, k := 0
2: while (v > 0)
3: if (u is even) then
4: if (r is even) then
5: u := u/2, r := r/2, k := k + 1
6: else
7: u := u/2, r := (r + p)/2, k := k + 1
8: else if (v is even) then
9: if (s is even) then
10: v := v/2, s := s/2, k := k + 1
11: else
12: v := v/2, s := (s + p)/2, k := k + 1
13: else
14: x := u− v
15: if (x > 0) then
16: u := x, r := r − s
17: if (r < 0) then
18: r := r + p
19: else
20: v := −x, s := s− r
21: if (s < 0) then
22: s := s + p
23: if (r > p) then
24: r := r − p
25: if (r < 0) then
26: r := r + p
27: return r and k

Note that the while conditional test for v is similar to the
while conditional test for b in the original Euclidean Algo-
rithm. The three if clauses refer to the algorithmic steps
to handle the three GCD cases (i), (ii) and (iii) shown in
the previous section that are required to remove integer di-
vision. The last two if statements act as a correction step
to normalize the final result based on the modulus. Check-
ing for evenness or oddness is done very easily in hardware
by checking the least significant bit. In most algorithms,
when an odd variable is detected, a right shift (division by
two) cannot be done on that variable immediately with-
out losing information. That variable has to be offset by
the modulus (an odd number) to produce an even variable
which could then be divided.

N. Takagi proposed a similar algorithm shown below. It
is an extension of the ExtEucdInv algorithm that performs
modular division. The Extended Binary GCD algorithm

(ExtBinGCDDiv) could be made to do modular inversion
by setting the numerator x to 1.

Algorithm ExtBinGCDDiv (Extended Binary
GCD Modular Division)
Input: m ∈ (2n−1, 2n), x ∈ [0,m) and y ∈ (0,m)
Output: z ≡ x/y (mod m)

1: a := y, b := m, u := x, v := 0, k := 0
2: while (a > 0)
3: while (a is even)
4: a := a/2
5: if (u is even) then
6: u := u/2
7: else
8: u := (u + m)/2
9: k := k − 1
10: if (k < 0) then
11: t := a, a := b, b := t
12: t := u, u := v, v := t
13: k := −k
14: if (a + b is even) then
15: a := (a + b)/2
16: if (u + v is even) then
17: u := (u + v)/2
18: else
19: u := (u + v −m)/2
20: else
21: a := (a− b)/2
22: if (u− v is even) then
23: u := (u− v)/2
24: else
25: u := (u− v + m)/2
26: if (b < 0) then
27: z := m− v
28: else
29: z := v
30: return z

The ExtBinGCDDiv algorithm performs modular divi-
sion by intertwining a procedure for finding the modular
quotient with that for calculating gcd(y, m) [5], [6]. The
counter k represents α− β, where α and β are values such
that 2α and 2β indicate the minimums of the upper bounds
of |a| and |b| respectively for any gcd(a, b) operation of the
algorithm. Interestingly, this counter acts as an indicator
to determine when to swap the (a, b) and (u, v) variables,
which is part of the procedure of the original Euclidean
algorithm. A 17-bit modular divider of the ExtBinGCD-
Div algorithm has been implemented in VHDL [7]. The
sequential design is approximately 1700 gates in AMI 0.5
micron technology.

III. Montgomery-Based Algorithms

The Montgomery-based algorithm for computing modu-
lar inverse, as proposed by Kaliski, performs the compu-
tation in two phases. The AlmMonInv algorithm shown
below is a combination of both phases. The first phase
performs the modular inverse computation by first taking
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the equation terms into the Montgomery domain. It then
performs what is known as an Almost Montgomery Inverse
on those terms before converting those terms back to the
integer domain using the Almost Montgomery Inverse Con-
version algorithm (AlmMonInvConv). The Montgomery-
based algorithm was shown to obtain a slight improvement
over the classical algorithm [1].

Algorithm AlmMonInv (Almost Montgomery In-
verse)
Phase I
Input: a ∈ [1, p− 1] and p
Output: y ∈ [1, p − 1] and k, where r = a−12k (mod p)
and n ≤ k ≤ 2n

1: u := p, v := a, r := 0, s := 1, k := 0
2: while (v > 0)
3: if (u is even) then
4: u := u/2, s := 2s
5: else if (v is even) then
6: v := v/2, r := 2r
7: else if (u > v) then
8: u := (u− v)/2, r := r + s, s := 2s
9: else
10: v := (v − u)/2, s := s + r, r := 2r
11: k := k + 1
12: if (r ≥ p) then
13: r := r − p
14: return y := p− r and k

Algorithm AlmMonInvCor (Almost Montgomery
Inverse Correction)
Phase II
Input: y ∈ [1, p− 1], p and k from Phase I
Output: r ∈ [1, p − 1], where r = a−1 (mod p) and 2k
from Phase I

15: for (i = 1 to k) do
16: if (r is even) then
17: r := r/2
18: else
19: r := (r + p)/2
20: return r and 2k

The key difference between the Montgomery and the
classical algorithms is that once the Montgomery algorithm
has the equation data in its domain, computations can
be done very quickly. The only downside to this is that
there is some cost in bringing the data back into the in-
teger domain. The algorithm is much simpler for Phase
I of the AlmMonInv compared to ExtEucdInv. There are
less nested if statements, which could potentially be ex-
pensive in hardware. This issue will be discussed later in
this paper.

A. A.-A. Gutub, A. F. Tenca and Ç. K. Koç proposed
two VLSI implementations for the Montgomery modular
inversion. The first design is a fixed fully-parallel hard-
ware and the second design is a scalable hardware. Both
designs were based on the Hardware Almost Montgomery

Inverse algorithm (HW-AlmMonInv) shown below.

Algorithm HW-AlmMonInv (Hardware Almost
Montgomery Inverse)
Input: a ∈ [1, p− 1] and p
Output: result ∈ [1, p − 1] and k, where result =
a−12k (mod p)

1: u := p, v := a, r := 0, s := 1, x := 0, y := 0, z := 0
2: k := 0
3: if (u0 = 0) then
4: u := shiftR(u), s := shiftL(s), goto 7
5: if (v0 = 0) then
6: v := shiftR(v), r := shiftL(r), goto 7
7: x := u− v; y := v − u; z := r + s
8: if (xborrow = 0) then
9: u := shiftR(x), r := z, s := shiftL(s), goto 7
10: s := z; v := shiftR(y); r := shiftL(r)
11: k := k + 1
12: if (v 6= 0) then
13: goto 2
14: x := p− r; y := 2p− r
15: if (xborrow = 0) then
16: result := x;
17: else
18: result := y;

The scalable architecture is the more attractive design
of the two as it tends to have a shorter critical-path, com-
pared to the fixed hardware. The scalable hardware is also
designed to fit in a small area. The maximum number of
bits the scalable hardware can handle depends only on the
memory [2], [3], [4].

IV. Euclidean Algorithm Improvement

Two types of algorithms, which are the classical and
the Montgomery-based algorithms, have been introduced.
Certain modifications and improvements have been made
to adapt these algorithms to hardware, as illustrated in
the previous sections. The final algorithm (ExtEucdInv-2 )
shown is a step ahead of the ExtEucdInv algorithm in that
it focuses on modifying certain parts of the basic algorithm,
such as simplifying conditional checks and minimizing data
dependencies, in order to reduce specific hardware costs.
This approach is done at a tradeoff. In this case, extra
hardware is used for auxiliary counters that are used to
track the number of shifts within data registers [1]. This
algorithm attempts to avoid the high delay operations such
as the postponed halving in k iterations of Phase II of the
AlmMonInv algorithm and miscellaneous conditional tests
in if and while statements.

Algorithm ExtEucdInv-2
Input: a ∈ [1, p− 1] and p
Output: r ∈ [1, p − 1], where r = a−1 (mod p), c u, c v
and 0 < c v + c u ≤ 2n

1: u := p, v := a, r := 0, s := 1, c u := 0, c v := 0
2: while (u 6= ±2c u & v 6= ±2c v)
3a: if (un, un−1 = 0) or (un, un−1 = 1 &
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3b: OR(un−2,...,u0) = 1) then
4: if (c u ≥ c v) then
5: u := 2u, r := 2r, c u := c u + 1
6: else
7: u := 2u, s := s/2, c u := c u + 1
8a: else if (vn, vn−1 = 0) or (vn, vn−1 = 1 &
8b: OR(vn−2,...,v0) = 1) then
9: if (c v ≥ c u) then
10: v := 2v, s := 2s, c v := c v + 1
11: else
12: v := 2v, r := r/2, c v := c v + 1
13: else
14: if (vn = un) then
15: oper = ”−”
16: else
17: oper = ”+”
18: if (c u ≤ c v) then
19: u := u oper v, r := r oper s
20: else
21: v := v oper u, s := s oper r
22: if (v = ±2c v) then
23: r := s, un := vn

24: if (un = 1) then
25: if (r < 0) then
26: r := −r
27: else
28: r := p− r
29: if (r < 0) then
30: r := r + p
31: return r, c u and c v

R. Lórencz simulated this algorithm with the ExtEucd-
Inv and AlmMonInv algorithms to find out the number of
additions/subtractions, shifts and tests that were executed
when performing computations for 14,580,841 inverses [1].
According to Lórencz, the ExtEucdInv-2 algorithm out-
performs the other two algorithms simply by augmenting
algorithmic conditional tests.

It is important to note that benchmark results that show
algorithmic performance do not necessarily reflect hard-
ware implementation performance and costs for the same
algorithm. For example, the number of addition and sub-
traction operations is indicative of how often the arithmetic
units are active for the payload of computations. While this
may be useful for certain power usage estimations, it does
not provide a complete picture of the hardware costs in
building the design. If delay is essential, the critical path of
a particular hardware can be the limiting factor and hence,
different implementations of the arithmetic units can be
applied to offset the effects of carry propagation.

V. Hardware Efficiency Issues

Metrics of hardware implementations are often not read-
ily apparent from the algorithms proposed using pseu-
docode. Making a pseudocoded algorithm realizable in
hardware involves breaking up the existing algorithm into
functional modular parts. Those parts have to be strung

together in the datapath in an efficient way so as not to in-
cur a longer critical path than need be. The datapath could
also be rearranged in such a way that it allows for pipelin-
ing in order to increase result throughput or for scalability
in order to allow for expandability [2], [3], [4].

The two main criteria in hardware implementations are
speed and area. One other important criterion is power,
which is well beyond the scope of this paper. The priori-
ties of these criteria change depending on the platform of
implementation. For example, on a cryptoserver, the speed
of the hardware implementation is much more important as
it has to service a large number of operations fairly quickly,
whereas a smartcard may not need to compute as fast but
is more area conscious. Therefore, it is important to notice
the tradeoffs between the two criteria and how the pseu-
docoded algorithms affect them.

For instance, it is known that multiplexers take up a
substantial amount of area in hardware due to its internal
implementation. The number of if statements in the pseu-
docode of the algorithm determine the quantity of the mul-
tiplexers. This is due to the fact that if-else statements will
be inferred as selection multiplexers in hardware. Nested
if statements infer priority selection and can be realized
as cascading multiplexers in hardware. Hence, excessive
use of if statements within the pseudocode can introduce
an incredible increase in hardware area and complicate the
design of the hardware control unit.

Hardware costs of conditional tests in pseudocode vary
depending on the kind of check that is performed. A check
to see if a variable is negative, positive, even or odd is eas-
ily done without any cost by checking either the MSB or
LSB of the variable. A check to see if a variable is equal to
zero is also fairly cheap in hardware. This could be accom-
plished by either having a logical OR tree structure to sieve
through the variable bits or a logical OR ripple structure
that runs through every variable bit. The first approach
has a critical path that is dependent on the number of bits
and fan-in of the logical OR gates. The second approach
has a longer critical path.

A check to see if a variable is equal to a particular value
is slightly more expensive than the check for zero. It re-
quires an XOR-OR tree or an XNOR-AND tree structure
to accomplish this. Lastly, the check to see if a variable
is greater than another variable involves a subtraction to
acquire the difference between the variables and a compar-
ison of the result to zero. The cost of this check depends
on the implementation of the subtraction.

Additions or subtractions can vary in terms of hardware
cost depending on how it is implemented. For example, a
carry ripple adder (CRA) can incur a very long critical path
for the carry propagation, so it is not often used for designs
with a large number of bits. On the other hand, a carry
save adder (CSA) requires additional area for registers to
store their carry representations, even though it is roughly
similar in terms of area to the CRA.

Division by two in hardware is simply the rewiring of bit
signals. There is no area cost for this operation.
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VI. Conclusion

As more and more crypto applications rely on the mod-
ular inverse operation, the need to implement the inversion
algorithm in hardware efficiently becomes increasingly im-
portant. In this paper, several modular inverse algorithms
in GF (p) were analyzed to study their origins and to trace
some of the evolutionary changes made to the basic al-
gorithm. A few algorithm-to-hardware issues have been
discussed. These issues suggest that a general methodol-
ogy should be outlined to point out the effects of algorithm
structure on how the hardware is implemented. Even now,
based on the suggestion that GCD-type calculations may
be too intricate to handle on cryptoprocessors, the newer
GCD-free algorithms for computing modular inverse [8] is
spawning interests and deserves further study.
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