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Abstract— Smart card security has been greatly compro-
mised due to passive power attacks. These attacks are easy
to implement and are virtually unseen to the card owner.
Many countermeasures have been tried and some have suc-
ceeded in increasing the difficulty of obtaining the secret key
that a smart card holds. Just as quickly as a countermeasure
is introduced another way to analyze the data is presented.
This is all due to the presence of a faulty algorithm that only
focuses on performance rather than security and power con-
sumption. Protecting smart cards from power attacks is a
daunting task. The key to protecting smart cards lies in the
algorithm and the consumption of power being the same for
all smart cards. With security in mind a new algorithm
will be introduced that will make the power signature the
same for all smart cards. This new method is called power
matching.
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I. INTRODUCTION

Security is a concern to everyone, especially the secu-
rity of his or her money. This is the whole point behind
encryption and the use of smart cards. Smart cards are
intended to make transactions more secure and prevent an
attacker from masquerading as someone else. Since Smart
cards use encryption you would think that this ensures the
protection needed, but it doesn’t. The design of a cryp-
tographic algorithm is designed with its security in mind,
but the physical implementation of the circuit is designed
with efficiency in mind. Security aspects, as compared to
efficient, simplicity, or power consumption criteria, do still
only play a marginal role in circuit design [3]. Because of
this smart cards are susceptible to attacks.

There are two different types of attacks. We are most
familiar with an active attack where the card is usually
stolen and put through a series of tests that would reveal
the secret key the card contains. Active attacks leave vis-
ible signs of an attack, allowing the owner of the card to
report the attack. The second type of attack is a passive
attack that goes unseen to the owner of the card, giving
the attacker time to take advantage of the newly acquired
information. The most powerful of the passive attacks is
the power attack. The attacker monitors the power that is
used by a smart card, and uses this information to deduce
the key.

Since smart cards are susceptible to these power attacks
countermeasures have been introduced, but it seems as
soon as a countermeasure is introduced a new way to use

the power signature is introduced. This paper will dis-
cuss these security attacks and some of the countermea-
sures that have been implemented. This paper will then
address the security problem and will design a circuit with
security in mind that will make the power signature the
same for all smart cards. This method is known as the
power matching method.

II. ACTIVE ATTACKS

Active attacks are usually applied to stolen smart cards,
because they leave visible signs of tampering and some-
times destroy the card. Active attacks include fault at-
tacks, probing attacks, and chip microsurgery. These at-
tacks require large amounts of time, sophisticated equip-
ment, and knowledge of how the chip works. There is little
defense against active attacks, because with enough time
and resources any security system can be defeated. Since
these attacks require large amounts of time and resources
and also leave visible signs of tampering, these attacks are
rarely used. Smart cards that show signs of tampering are
immediately reported by the owner of the card and make
it difficult for the attacker to use the newly acquired secret
information. This is why attackers prefer to use passive
attacks.

III. PASSIVE ATTACKS

Passive attacks are applied without the owner of the
smart card knowing that they are being attacked. These
attacks are not destructive, and do not leave visible signs of
tampering. Passive attacks include timing attacks, glitch
attacks, and power analysis [2]. They require little sophis-
tication and minimal investment, and can be carried out
against a large number of individual cards by a small num-
ber of rogue card readers [2]. Timing attacks and glitch
attacks pose little risk to well designed smart card applica-
tions, since it is easy to protect the software and hardware
elements of smart cards against them [2]. Power attacks are
the most successful of the passive attacks, because they are
easy to implement and very difficult to avoid. It is based on
the observation that the detailed power consumption curve
of a typical smart card (which describes how the exter-
nally supplied current changes over time) contains a huge
amount of information about its operation [2]. These power
attacks are in a group known as leakage attacks. These at-
tacks exploit the fact that a hardware device can sometimes
leak information when running a cryptographic algorithm



[6]. One source of leaked information is the time-varying
power consumption of a device executing a cryptographic
algorithm [5]. Power attacks are discussed in greater detail
below.

IV. POWER ATTACKS

Power attacks are executed by observing detailed power
consumption of a typical smart card transaction. When
gates switch on and off, a sequence of events are displayed
in the power fluctuations. This information is much like
a fingerprint. It will be distinct for a specific secret key.
For example, the power consumption profiles of addition
and multiplication operations are completely different, the
power consumed by writing 0..0 and 1..1 to memory are
noticeably different, and it is possible to visually extract
the secret key of an RSA operation by determining which
parts look like a modular squaring and which parts look like
modular multiplication [2]. There are three types of power
attacks. These types are Simple Power Analysis (SPA),
Differential Power Analysis (DPA), and Inferential Power
Analysis (IPA). Some implementations are resistant to SPA
attacks, but not DPA attacks. Others are resistant to DPA,
but not SPA attacks. Each attack has its strengths and
weaknesses.

V. SIMPLE POWER ANALYSIS (SPA)

In SPA the attacker studies a single power consumption
curve to obtain statistical information about the identity of
the instructions and the Hamming weight of the data words
read from or written into memory at any given clock cy-
cle [2]. The measured values must be sampled at adequate
instants, whose timing must be known by the attacker. In
SPA attacks, the aim is essentially to guess - from the val-
ues of the consumption - which particular instruction is
being computed at a certain time and with which input or
output, and then to use this information to deduce some
part of the secret [9]. Figure 1 shows the electric consump-
tion of a chip, measured during a DES computation on a
real smart card [9].

The strength of SPA over DPA is that it only requires
the power consumption characteristics of one execution of
the algorithm, where as DPA requires multiple power con-
sumption curves recorded from different executions with
different inputs. The weakness of SPA is that random noise
can sometimes prevent an attack.
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Figure 1: Electric consumption measured on the 16
rounds of a DES computation [9].

VI. DIFFERENTIAL POWER ANALYSIs (DPA)

In DPA the attacker studies multiple power consump-
tion curves recorded from different executions with differ-
ent inputs, and uses statistical differences between partic-
ular subsets of executions to find in an automated way
particular key bits [2].

There are two types of DPA attacks, first-order DPA at-
tacks and second-order DPA attacks. During a first-order
DPA attack, the attacker monitors power consumption sig-
nals and calculates the individual statistical properties of
the signals at each sample time [5]. In a higher-order DPA
attack, the attacker calculates joint statistical properties
of the power consumption at multiple sample times within
the power signals [5]. Second-order DPA attacks require
more complex analysis, increased memory and processing
requirements and an increased number of power consump-
tion measurements [5].

The initial focus was on symmetric cryptosystems such
as DES and AES candidates, but public-key cryptosystems
have since been shown to be also vulnerable to the DPA
attacks [4].

The strengths of DPA over SPA are that the attacker
doesn’t need to know the implementation to perform the
attack, and that the averaging process reduces noise that is
an obstacle to SPA. The weakness of DPA is that it requires
time.

VII. INFERENTIAL POWER ANALYSIs (IPA)

An TPA attack is characterized by two stages, the first
a lengthy profiling stage, and the second a simpler key ex-
traction stage [10]. The goal of the profiling stage is to
locate and identify the key bits as they are used during
the computation [10]. The profiling stage only needs to be
performed once for each software implementation. The key
extraction stage can be done quickly. To extract the key
from a new instance of the same implementation, we take
a single power trace, chop it into rounds, and measure the
power consumed at the locations specified in the key loca-
tion table [10]. Using our knowledge of the key bit power
distribution, which we obtained during the profiling stage,
we can tell whether the key bit is a 0 or a 1 [10].

There are several strengths to IPA that would make it
effective in situations that DPA would be difficult. This is
the reason that IPA has been introduced.

The first is when attacking a DES algorithm the plain-
text or the ciphertext would be needed for DPA. Neither
the plaintext nor the ciphertext are required to mount an
IPA attack. Also, a DPA attack is restricted to points in
the algorithm where the plaintext (or ciphertext) interacts
directly with the key; this is because the differential traces
are based on a ”selection function” that predicts a bit value
based on a small number of plaintext bits and a small num-
ber of key bits [10]. This means that when attacking a DES
algorithm, DPA would be restricted to the beginning or the



end of the cryptographic algorithm. ITPA can look at any
part of the algorithm for its attack.

The second is the ability of IPA to do fast key extraction
after a single lengthy profiling stage. A protocol may dis-
able a card after only a small number of operations. This
could block DPA from acquiring the large number of traces
needed to acquire the key. TPA could perform the profiling
stages on another card and only a small number of traces
for the card being attacked.

For more information on IPA see, IPA: A New Class of
Power Attacks by Paul N. Fahn and Peter K. Pearson [10].

VIII. COUNTERMEASURES

Three countermeasures have been suggested to defend
against power attacks. These countermeasures are:

1.) Introducing random timing shifts, so that the com-
puted means do not correspond any longer to the consump-
tion of the same instruction [4]. The crucial point consists
here in performing those shifts so that they cannot be eas-
ily eliminated by statistical treatment of the consumption
curves [4].

2.) Replace some of the critical instructions (in partic-
ular the basic assembler instructions involving writings in
the carry, readings of data from an array, etc) by assembler
instructions whose ”consumption signature” is difficult to
analyze [4].

3.) For a given algorithm, giving an explicit way of com-
puting it, so that DPA is provably unefficient on the ob-
tained implementation [4].

This paper doesn’t intend to look at all countermeasures,
but will look at some of the more recent countermeasures
that have been introduced. These countermeasures are dis-
cussed in greater detail below.

IX. DUPLICATION METHOD

Goubin et al. proposed a strategy, called the ”dupli-
cation method”, to protect the DES algorithm from first-
order DPA attacks [5]. Their countermeasure works by
splitting secret data into two random halves and operating
on each half separately [5]. Such an approach causes the
power consumption signals to be randomized, thus thwart-
ing DPA [5]. As a generalization, Chari et al. suggested a
countermeasure that splits the data into k shares [5]. They
proved that the amount of analysis needed to attack such
a scheme increases exponentially with respect to k [5].

X. CURRENT SENSOR

The current sensor method was introduced to equalize
the current used by a smart card. A current sensor is used
to actively equalize the current used by controlling an ad-
ditional current sink. This method was found to be inef-
fective since the changes in the power supply curves were
so rapid that any compensation curve technique is likely to
lag behind and leave many power spikes clearly visible [2].

XI. AR Gap METHOD (Two CAPACITORS)

The air gap method was introduced to disassociate the
correlation between the power supplied to the card from

the power consumed by the card. This is implemented with
two capacitors. The behavior of the capacitors is defined
by a simple switch control unit and four power transistors,
which are added to the smart card chip [2]. The preferred
cyclic sequence of action is [2]:

1.) The first capacitor is disconnected from the external
power.

2.) The first capacitor is connected to the chip.

3.) The second capacitor is disconnected from the chip.

4.) The second capacitor is connected to the external
power.

With this behavior the smart card chip is always powered
by at least one capacitor, but the external power supply is
never connected directly to the internal chip [2]. These two
capacitors are small and could easily fit inside the smart
card casing.

The only disadvantage of the capacitor approach is that
it can supply power to the chip only for several hundred
clock cycles before its voltage becomes too low, and in each
clock cycle the supplied voltage drops by about 0.01 volts
[2].

For more information on the air gap method see, Pro-
tecting Smart Cards from Passive Power Analysis with De-
tached Power Supplies by Adi Shamir [2].

XII. BOOLEAN AND ARITHMETIC MASKING

Thomas Messerges developed a general countermeasure,
consisting in masking all the inputs and outputs of each el-
ementary operations used by the microprocessor [4]. This
magsking strategy is possible if all the fundamental oper-
ations used in a given algorithm can be rewritten with
masked input data, giving masked output data [4]. This is
easily seen to be the case for the DES algorithm, because
a single masking (using the XOR operation) can be used
throughout the computation of the 16 rounds [4]. For RSA,
a masking using the multiplication operation in the multi-
plicative group modulo n is also sufficient [4]. However, for
algorithms that combine Boolean and arithmetic functions,
two different kinds of masking have to be used [4]. For
these algorithms a method to convert between Boolean and
arithmetic masking was introduced. The masking method
is shown below.

Boolean masking: z' =z & r

Arithmetic masking: 2’ = (z — r) mod 2*

Jean-Sebastien Coron and Louis Goubin [4] found a
weakness in this countermeasure using DPA. Even though
they didn’t perform the experiments to validate the attack
they laid the groundwork for future research.

For more information on Boolean and Arithmetic Mask-
ing see, On Boolean and Arithmetic Masking against Dif-
ferential Power Analysis by Jean-Sebastien Coron and
Louis Goubin [4].



XIII. RANDOM REGISTER RENAMING

Random register renaming tries to take out the correla-
tion between the physical measurements taken at different
points during the computation and the internal state of the
processing device, which is related to the secret key [1]. For
example, when data is loaded from memory, the memory
bus will have to carry the value of the data, which will take
a certain amount of power depending on the data value [1].
Since the load instruction always happens at the same time
one can produce correlations between various runs of the
application, eventually giving away the secret of the smart
card [1].

D. May, H. Muller and N.P. Smart propose a method for
introducing highly aggressive randomized execution into a
conventional processor [1]. They argue that this produces
a great deal of temporal misalignment of traces, which can
help defeat DPA [1]. The methodology is to take stan-
dard techniques from the design of super-scalar architec-
tures and replace parallel execution with random execution
[1]. They call this new processor architecture NDISC for
Non-Deterministic Instruction Stream Computer [1]. This
defense is trying to introduce timing shifts, and hard to
analyze algorithms.

One could argue that the register renaming in a super-
scalar architecture is not random, and will produce the
same sequence on the same set of instructions each time it
is reset and executed. The NDISC uses a process they call
?Instruction De-scheduling” to randomize the sequence.
This is done by identifying instructions that can be exe-
cuted in parallel, and instead of running these instructions
in parallel, they use this information to run the instruc-
tions out of order. This out of order instruction scheduling
makes a DPA attack much more difficult if not impractical.

For more information on random register renaming see,
Random Register Renaming to Foil DPA by D. May, H.L.
Muller, and N.P. Smart [1].

XIV. RANDOM PROCESS INTERRUPTS

One of the most common countermeasures against DPA
is the introduction of random process interrupts (RPIs)
[6]. Instead of executing all the operations sequentially, the
CPU interleaves the code’s execution with that of dummy
instructions so that corresponding operation cycles do not
match because of time shifts [6]. This has the effect of
smearing the peaks across the differential trace due to a
de-synchronization effect, known in digital signal process-
ing under the name of incoherent averaging [6]. The RPIs
don’t make DPA attacks impossible, since the time shift
can be considered as added noise, but does make the at-
tack considerably more difficult. Christophe Clavier, Jean-
Sbastien Coron, and Nora Dabbous introduced a sliding
window to DPA making this attack more feasible [6]. For
more information on attacking RPIs see, Differential Power
Analysis in the Presence of Hardware Countermeasures by
Christophe Clavier, Jean-Sbastien Coron, and Nora Dab-
bous [6].

XV. POWER MATCHING METHOD

The power matching method has been developed to
protect the square-and-multiply algorithm for RSA. The
square-and-multiply algorithm has been implemented two
ways, and are shown below.

Modular exponentiation implementations [8]:

expl(M, e, N)
{R:=M
for (i :=n — 2 downto 0)
{ R:=R? mod N
if (ith bitof eisal)
R:=R-M mod N }
return R }

exp2(M, e, N)
{R:=1
S:=M
for (i:=0 to n—1)
{ if (ithbitofeisal)
R:=R-Smod N
S := 5% mod N}
return R }

The main problem with both algorithms is that the out-
come of the ”if statement” might be observable in the power
signal [8]. This would directly enable the attacker to learn
every bit of the secret exponent [8]. At first glance the
simple solution would be to always multiply whether it is
a 1 or a 0, and save the correct value based on the 1 or the
0. This increases the time and may not be enough to hide
the save operation.

The power dissipated in CMOS cells such as logic gates,
flip-flops, or latches mainly depends on changes of com-
ponents’ states rather than on the states themselves [3].
These are the things that make the power signature dif-
ferent for each smart card. The only way to completely
protect a smart card is to match every bit with its oppo-
site at every operation. This doubles the area needed for
the computation because for every value its opposite needs
to be calculated along side it at the same instance. Granted
this isn’t the most efficient way to compute the value, but
we are putting security first and efficiency second. The
design is discussed in greater detail below.

XVI. POWER MATCHING DESIGN

The algorithm that was used is essentially the same for
expl. We modified it to always perform the R = R*M mod
N multiplication and made the squaring step a multiplica-
tion operation. The new algorithm is shown below.

expl(M, e, N)
{R:=M
for (i :==n — 2 downto 0)
{ R:==R-R mod N
{ S:=R-M mod N
if (ith bitof eisal)
R:=5}
return R }



The main difference is the design of the chip. For every
set of bits its opposite is present, causing the Hamming
weight to always be the same. The squaring procedure has
been changed to a multiplication procedure, making it im-
possible to distinguish the difference between the squaring
and the multiplication operations. Inside the multiplier,
gates that would be an AND are matched with a NAND
gate. Buffers are added to make the timing the same. A
simple example is shown in Figure 2. Each value that is
stored in memory is stored with each bit next to its oppo-
site.
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Figure 2: Simple multiplication scheme with opposite
values imbedded.

XVII. TEsT RESuULTS

Using the power matching method we produced a pro-
totype smart card and subjected it to SPA, DPA and IPA.
With our test results we found that we were able to defend
a smart card from all types of power attacks. We changed
the secret key of the smart card several times and each time
we were not able to distinguish the difference between cards
with different secret keys. Table 3 shows different power
attacks used against three smart cards. The first with no
countermeasures, the second with noise introduced, and
the third, using the Power Matching method.

Normal | With Noise | Power Matching
SPA Yes No No
DPA Yes Yes No
TPA Yes Yes No
Table 3: Results of Power Attacks Against the Power

Matching Method

XVIII. LIMITATIONS

The limitation to this method is that the size of a chip
on a smart card is limited by the International Organiza-
tion for Standardization (ISO) standard 7816. This isn’t
sufficient room to make the computation and compute its
opposite at the same time. Before this can be implemented
in a commercial smart card a revision to this standard will
need to be introduced.

XIX. CONCLUSION

The threat of power attacks to smart cards is a real con-
cern. We have discussed the different types of power at-
tacks and some of the countermeasures that have been im-
plemented to protect smart cards. As you can see from
above, there are some good countermeasures that have
been introduced. Many of these countermeasures have still
been defeated, because attackers have found new ways to
process the power curves. The power matching method,
introduced here, will make processing the power curves un-
informative. Essentially the power matching method will
make the power signature of every smart card the same.
This will remove the power leakage venerability of smart
cards.
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