
Software Implementations of Elliptic Curve Cryptography

Aneel Murari
ECE679

Oregon State university

June 9, 2003

Abstract

Elliptic Curve Cyrptography has gained a lot of significance in recent times. This is mostly due to the small
key sizes associated with Elliptic Curve Cryptograhic systems. This paper presents a study of various algorithms for
performing underlying field arithmetic and point representation useful in software implementations of Elliptic curve
cyptography over prime fileds as well as binary fields.

1. Introduction

Elliptic curve cryptography was proposed independently by Neal Kolblitz and Victor Miller in 1985. Elliptic curves
defined over GF

�
p � and GF

�
2n � are generally used in cryptography. Elliptic curves over GF

�
2n � are used more widely

due to existance of efficient algorithms for GF
�
2n � arithmetic.

An Elliptic Curve over GF
�
p � is defined by the set of points

�
x � y � that satisfy the equation y2 � x3 � ax � b where

a , b � GF
�
p � and p � 3 and 4a3 � 27b2 �� 0 together with a special point O called the point at infinity. A point on

an elliptic curve E can be seen as a point on the two-dimensional plane satisfying the elliptic curve equation which is
of the above form. The set of such points satisfying an elliptic curve equation forms a group under addition operation.
The point O or the point at infinity serves as an identity element in the group. The addition operations in the group are
given the following rules:

O � O � O
�
x � y � � O � �

x � y �
�
x � y � � �

x �	� y � � 0

Addition of two points with x1
�� x2 �

x1 � y1 � �
�
x2 � y2 � �

�
x3 � y3 �

λ � �
y2 � y1 �

�
x2 � x1 ��
 1

x3
� λ2 � x1 � x2

y3
� λ

�
x1 � x3 ��� y1

Doubling of a point with x1
�� 0 �

x1 � y1 � �
�
x2 � y2 � �

�
x3 � y3 �

λ � �
3x2

1
� a � � 2y1 � 
 1

x3
� λ2 � 2x1

y3
� λ

�
x1 � x3 ��� y1

An Elliptic Curve over GF
�
2p � is defined similar to the one in GF

�
p � . An Elliptic curve E over GF

�
2n � is given

by set of points
�
x � y � that satisfy the equation y2 � xy � x3 � ax2 � b where a , b � GF

�
2n � and b �� 0 together with a

special point O called the point at infinity. Similar to its counterpart in GF
�
p � , the set of points forms a group under

addition operation. The addition rules for the group are as follows:

O � O � O

�
x � y � � O � �

x � y �
�
x � y � � �

x � x � y � � 0

1



Addition of two points with x1
�� x2 �

x1 � y1 � �
�
x2 � y2 � �

�
x3 � y3 �

λ � �
y2 � y1 �

�
x2 � x1 � 
 1

x3
� λ2 � λ � x1

� x2
� a

y3
� λ

�
x1

� x3 � � x3
� y1

Doubling of a point with x1
�� 0 �

x1 � y1 � �
�
x2 � y2 � �

�
x3 � y3 �

λ � x1
� �

y1 �
�
x1 ��
 1

x3
� λ2 � λ � a

y3
� x2

1
� �

λ � 1 � x3

The operation of adding a point several times to itself, i.e. the calculation of Q � kP where k is an integer and
P � E, is called the elliptic curve scalar multipilcation. This scalar multiplication forms the basic for elliptic curve
crytography. An elliptic curve discrete logarithm problem can be defined as follows. If E is an elliptic curve over Fpr

and P is on E
�
Fpr � , then the discrete logarithm problem on E

�
Fpr � is the problem, given a point P � E

�
Fpr � , of finding

an integer k � Z such that kP � Q if such a k exists.

Efficinet implementations of Elliptic curve cryptography can be classified at two levels. At the elliptic curve group
level, fast implementations of scalar point multipliccation is crucial. This problem is analogous to the problem of
exponentiation in multiplicative group. And at the underlying finite field level, fast implementations of multipication,
Inversion and reduction are considered important. Field multiplication is the next costly operation after inversion. Var-
ious techniques like projective coordinates trade field multiplication to field inversion. Hence, it is desirable to have
efficient implementations of field multiplication and reduction.

In the following sections we present various algorithms for performing field multiplications, inversion and reduc-
tion over GF

�
P � and GF

�
2n � . We also present algorithms for scalar point multiplication. We also explore representa-

tions of points on Elliptic curves using the projection coordinates and how certain type of projection coordinate suits
to certain platforms for increased efficiency.

2. Arithmetic in Prime Field

This section presents algorithms for performing arithmetic in Fp in software. Without loss of generality, we assume the
implementation platform for the algorithms is 32 bit. The bits a word W are numbered from 0 to 31, with the rightmost
bit of W designated as bit 0. The elements of Fp are the integers between 0 and p � 1, written in binary. Let m ��� log2 p �
and t ��� m � 32 � . In software, we can store a field element a in an array of t 32-bit words: a � �

at 
 1 ������� � a1 � a0 � .

2.1 Addition

The below given algorithm calculates the sum of two numbers mod p by first finding the sum word-by-word and then
subtracting p if the result exceeds p � 1.Each word addition produces a 32-bit sum and a 1-bit carry digit which is
added to the next higher-order sum. The “Add” in step 1 and “AddWithCarry” in step 2 of the algorithm manage the
carry digit. On processors such as the Intel Pentium family which offer an “Add with Carry” instruction as part of the
instruction set, these may be fast single-instruction operations.

Modular Addition:
Input: A modulus p and integers a, b �	� 0 � p � 1 
 .
Output: c � �

a � b � mod p

1. c0 � Add(a0 ,b0)
2. For i from 1 to t � 1 do: ci � AddWithCarry(ai,bi)
3. If the carry bit is set, then subtract p from c = (ct 
 1 ������� � c1 � c0)
4. if c � p then c � c � p
5. Return(c)

2



2.2 Subtraction

Implementation of modular subtraction is similar to the implementation of modular addition except the fact that the
carry in addition is treated as borrow in subtraction. As with the case of addition, the first two steps are generally fast
but are faster if the processors has specialized instructions for them.

Modular Subtraction
Input: A modulus p and integers a, b �	� 0 � p � 1 
 .
Output: c � �

a � b � mod p

1. c0 � Subtract(a0,b0)
2. For i from 1 to t � 1 do: ci � SubtractWithBorrow(ai,bi)
3. If the carry bit is set, then add p from c = (ct 
 1 ������� � c1 � c0)
4. Return(c)

2.3 Modular Multipication and squaring

Algorithm below specifies the standard multiplication algorithm for multiplying two integers a and b.

Integer Multiplication:
Input: Integers a, b �	� 0 � p � 1 
 .
Output: c � a � b

1. r0 � 0 � r1 � 0 � r2 � 0 �
2. for k from 0 to 2

�
t � 1 � do

2.1 For each element of
� �

i � j ��� i � j � k � 0 � i � j � t � do�
uv � � ai � b j

r0 � Add(r0 � v)
r1 � AddWithCarry(r1 � u)
r2 � AddWithCarry(r2 � 0)

2.2 ck � r0 � r0 � r1 � r1 � r2 � r2 � 0
3. c2t 
 1 � r0
4. Return(c)

Direct modification of the above Multiplication algotirhm leads to the following squaring algorithm. The number
of multiplications are roughly half from the above algorithm.

Squaring Algorithm:
Input: Integer a � � 0 � p � 1 
 .
Output: c � a2

1. r0 � 0 � r1 � 0 � r2 � 0 �
2. for k from 0 to 2

�
t � 1 � do

2.1 For each element of
� �

i � j ��� i � j � k � 0 � i � j � t � do�
uv � � ai � a j

If (i ¡ j) then (uv) � 1, r2 � AddWithCarry(r2 � 0)
r0 � AddWithCarry(r0 � v)
r1 � AddWithCarry(r1 � u)
r2 � AddWithCarry(r2 � 0)

2.2 ck � r0 � r0 � r1 � r1 � r2 � r2 � 0
3. c2t 
 1 � r0
4. Return(c)

2.4 Modular Reduction

Modular reduction using Barrets method [1] is generally considered to be fast reduction technique for modular reduc-
tion. The algrithm is as follows:

Barrett Reduction:
Input: b � 3, p � k �	� logb p 
 � 1, 0 � x � b2k � µ ��� b2k � p 

Output: x mod p

3



1. q � � � x � bk 
 1 
 � µ � bk � 1 

2. r � (x mod bk

�
1 ) - (q � p mod bk

�
1).

3. If r � 0 then r � r � bk
�

1

4. While r � p do: r � r � p
5. Return(r)

2.5 Binary Inversion Algorithm

The following algorithm is a varient of Extended Euclidian Algorithm which calculates the inverse of field element.

Input: Prime p, a � � 1 � p � 1 

Output: a 
 1 mod p
1. u � a � v � p � A � 1 � C � 0
2. While u �� 0 do

2.1 While u is even do:
u � u � 2. If A is even then A � A � 2; else A �

�
A � p ��� 2

2.2. While v is even do:
v � v � 2. If C is even then C � C � 2; else C �

�
C � p ��� 2

2.3 If u � v then: u � u � v, A � A � c; else: v � v � u � C � C � A
3. return(C mod p)

3. Arithmetic in Binary Field

In this section, we present algorithms for preforming Binary filed arthimetic GF
�
2m � where m is prime. Much like the

previous section we assume that underlying implementation platfrom has a 32-bit architecture. Of the many represen-
tations of GF

�
2m � where m is prime, it appears that a polynomial basis representation with a trinomial or pentanomial

as the reduction polynomial yields the simplest and the fastest implementation in software. So, we can use the poly-
nomial based representation here in this paper.

Let f
�
x � � xm � r

�
x � be an irreducible binary polynomial of degree m. The elements of GF

�
2m � are binary

polynomials of degree at most m � 1 with addition and multiplication performed modulo f
�
x � . A field element

a
�
x � � am 
 1xm 
 1 � ����� a2x2 � a1x � a0 is associated with the binary vector a � �

am 
 1 ����� � � a2 � a1 � a0 � of length m.
The addition and subtraction in GF

�
2m � is identical to that of prime field addition and subtraction. We will give the

reamining Arithmetic algorithms below.

3.1 Multiplication

The classical shift-and-add method for field multiplication is based on the fact that a � b can be rewritten as am 
 1xm 
 1b �
� ��� � a1xb � a0b. The ith iteration of the algorithm computes xib mod f

�
x � and add the result to the accumlator if ai

� 1.
It must be noted that b � x mod f

�
x � can be calculated easily by a left-shift of the vector representation of b, followed

by addition of r
�
x � to b is bm

� 1

Shift-and-add Field Multiplication:
Input: Binary polynomials a

�
x � and b

�
x � of degree at most m � 1.

Output: c
�
x � � a

�
x � � b � x � mod f

�
x � .

1. if a0
� 1 then c � b; else c � 0.

2. For i from 1 to m � 1 do
2.1 b � b � x mod f

�
x �

2.2 If ai
� 1 then c � c � b.

3. Return(c).

while the above stated algorithm is good for hardware implementations in which vector shift can be performed
in on clock cycle, it may be not suitable very much for software implementations due to multiple shifts.Hence, we
now consider algorithms for field multiplication which multiplies the two polynomial vectors and later reduction mod
f
�
x � is applied to the result. The following algorithm is called the comb method for polynomial multiplication and is

based on the observation that if b
�
x � � xk has been computed for some k � � 0 � 31 
 , then b

�
x � � x32 j

�
k can be obtained by

appending j zero words to the right of the vector representation of b
�
x � � xk .

4



Left-to-right comb method:
Input: Binary polynomials a

�
x � and b

�
x � of degree at most m � 1.

Output: c
�
x � � a

�
x � � b � x � .

1. C � 0
2. For k from 31 downto 0 do

2.1 For j from 0 to t � 1 do
If the kth bit of A � j 
 is 1 then add B to c

�
j � .

2.2 If k �� 0 then C � C � x. 3. Return(C).

Left-to-right comb method with window size = 4:
Input: Binary polynomials a

�
x � and b

�
x � of degree at most m � 1.

Output: c
�
x � � a

�
x � � b � x � .

1. Compute Bu
� u

�
x � � b � x � for all polynomials u

�
x � of degree 3.

2. C � 0.
3. For k from 7 downto 0 do

3.1 For j from 0 to t � 1 do
Let u � �

u3 � u2 � u1 � u0 � , where ui is bit (4k � i) of A � j 
 . Add Bu to C
�

j � .
3.2 If k �� 0 then C � C � x4.

4. Return(C).

Once Multiplication is done, we trun our attention now to reducing the multiplied polynomials by mod f
�
x � . the

following algorithm computes c
�
x � mod f

�
x � where c

�
x � is a polynomial of degree atmost 2m � 2. The algorithm

is based on the observation that xi � xi 
 mr
�
x � (mod f

�
x � ) for i � m. The idea is that the polynomilas xkr

�
x � can be

precomputed and hence the algorithm can be faster.

Modular Reduction - One bit at a time:
Input: A binary polynomial c

�
x � of degree atmost 2m � 2.

Output: c
�
x � mod f

�
x �

1. Compute uk
�
x � � xkr

�
x � � 0 � k � 31.

2. For i from 2m � 2 downto m do
2.1 If ci = 1 then

Let j �	� � i � m ��� 32 
 and k � �
i � m ��� 32 j.

Add uk
�
x � toC

�
j � .

3. Return((c � t � 1 
 ����� �C � 1 
 � C � 0 
 )).

The reduction algorithm can further be modified to process it one word at a time customizing it according to the
reduction polynomial that is being used.

3.2 Squaring

Unlike polynomial multiplication, squaring a given polynomial can be done much faster because squaring is a linear
operation in GF

�
2m � . i.e., if a

�
x � � ∑m 
 1

i � 0 aixi, then a
�
x � 2 � ∑m 
 1

i � 0 aix2i. The binary representation of a
�
x � 2 is obtained

by inserting a 0 bit between consecutive bits of binary representation of a
�
x �

Squaring:
Input: a � GF

�
2m �

Output:a2 mod f
�
x �

1. For each byte v = (v7 ������� v1 � v0), compute the 16-bit quantity T
�
v � = (0 � v7 ������� 0 � v1 � 0 � v0).

2. For i from 0 to t � 1 do
2.1 Let A � i 
 = (u3 � u2 � u1 � u0) where each u j is a byte
2.2 C � 2i 
 �

�
T
�
u1 � � T

�
u0 � � , C � 2i � 1 
 �

�
T
�
u3 � � T

�
u2 � � .

3. Compute b
�
x � � c

�
x � mod f

�
x �

4. Return(b).

5



3.3 Inversion

The inverse of a non zero element a � GF
�
2m � can be calculated using a variation of Extended Euclidean Algorithm

which is given below:

Extended Euclidian Algorithm for Inverse:
Input: a � GF

�
2m � � a �� 0

Output: a 
 1 mod f
�
x �

1. b � 1 � c � 0 � u � a � v � f
2. While degree(u) �� 0 do

2.1 j � degree(u) - degree(v)
2.2 If j � 0 then: u � v, b � c, j � � j
2.3 u � u � x jv, b � b � x jc

3. Return(b)

A varient of Almost inverse Algorithm from is given in [6]. For a � GF
�
2m � � a �� 0, a pair (b � k) is returned where

ba � xk mod f
�
x � . A reduction is then applied to obtain a 
 1 � bx 
 k mod f

�
x � . Below is the algorithm for this.

Variation of Almost Inverse Algorithm for inversion:
Input: a � GF

�
2m � � a �� 0

Output: a 
 1 mod f
�
x �

1. b � 1, c � 0, u � a, v � f
2. While x divides u do:

2.1 u � u � x
2.2 If x divides b then b � b � x; else b �

�
b � f ��� x

3. If u � 1 then return(b)
4. If degree(u) � degree(v) then:u � v, b � c
5. u � u � v, b � b � c
6. Goto step 2.

4. Point Representation

Elliptic curve point representation given in section 1 of this paper are called the Affine coordinates of a point. While
it is easy to understand the addition and doubling rules of elliptic curve points in Affine coordinates, it is not always
the efficient way of representing the points and performing arithmatic in Affine coordinates. For instance, when two
points P1 and P2 are not equal, general addition of points P1 and P2 requires 1 inversion, 2 multiplications and 1
squaring operations. This computing effort can be reduced if the Elliptic curve points are represented using another
form of representation called the Projective Coordinates.

Representation of an Elliptic curve point in projective coordinate replaces the inversion operation which is con-
siderably expensive than multiplication with multiplication Operation. There are many forms of projective coordi-
nates proposed. Some of them gives improved efficiency while using with certain type of elliptic curves. in standard
projective coordinates, the projective point (X : Y : Z), Z �� 0, corresponds to the affine point (X � Z � Y � Z). The corre-
sponding elliptic curve equation would be Y 2Z � X3 � 3XZ2 � bZ3. In jacobian projective coordinates, the projec-
tive point (X : Y : Z) corresponds to the affine point (X � Z2 � Y � Z3) and the corresponding elliptic curve equation is
Y 2 � X3 � 3XZ4 � bZ6. And in chudnovsky Jacobian coordinates, the point (X : Y : Z : Z2 : Z3) corresponds to the
jacobian point (x : y : Z).

Point doubling and addition can be done by first converting the projective coordinates to affine coordinates and
then the point doubling and addition formulas may be applied which would not neccesiate Inversion operation and
finally clearing the dinominators to get back the projective coordinates. Table below shows number of various opera-
tions required to perform point doubling and addition in various forms of point representation [1]. It can be observed
that Doubling is fastest in Jacobian form where as addition is fastest in mixed affine-jacobian form.

Doubling General Addition Mixed coordinates
2A � A 1I, 2M, 2S A � A � A 1I, 2M, 1S J � A � J 8M, 3S
2P � P 7M, 3S P � P � P 12M, 2S J � C � J 11M, 3S
2J � J 4M, 4S J � J � J 12M, 4S C � A � C 8M, 3S
2C � C 5M, 4S C � C � C 11M, 3S

6



A = Affine, P=Standard Projective, J = jacobian, C = Chudnovsky, I = Inverse, M = Multiplication, S = Subtraction.

5. Point Multiplication

This section describes various scalar point multiplication algorithms. Point multiplication is the most expensive oper-
ation in the elliptic curve cyptography schema. The algortims given in this section calculate kP where k is an integer
and P is a point on the elliptic curve.

The below given algorithm is the addition version of a basic square and add version of the exponentition algorithm.

Binary Method for point multiplication:
Input: k � �

kt 
 1 ������� � k1 � k0 � 2, P � GF
�
2m �

Output: kP

1. Q � O
2. For i from t � 1 downto 0 do

2.1 Q � 2Q
2.2 if ki

� 1 then Q � Q � P
3. Return(Q).

The approximate number of 1’s in the binary representation is m � 2. Hence the above algorithm would take 0 � 5m
point additions and m point doublings. If the affine coordinates are used, it would require 3m Multiplications and 1 � 5m
Inversions. If projective coordinates are used to store Q, it requres only 8 � 5m multiplications and a little overhead
in converting the coordinates back to affine coordinates. This is an example where projective coordinates are more
efficeint to implement than their affine counterparts.

In elliptic curves if P � �
x � y � is a point on the curve, the point � P is

�
x �	� y � if P � GF

�
p � or it is equal to

�
x � x � y �

if P � GF
�
2m � . Hence point subtraction is as expensive as point addition on an elliptic curve. This property of elliptic

curves can be exploited to efficiently record the point multiplication of a point P. In order to exploit this property, we
first need to represent the elliptc curve point P in form called the canocnical recording. This representation takes digits
from the set

�
1 � 0 � 1̄ � to represent a point P. The following table also called the Reitwiesners Algorithm [3] is used to

get an efficient canonical recording for a given binary representation of the point.

ei
�

1 ei ai fi ai

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 0 0
1 0 1 1̄ 1
1 1 0 1̄ 1
1 1 1 0 1

In the above table f gives the final canonical reading for the given point. Once the canonical recording is done,
the point multiplication is done by the following algorithm.

Binary canonical recording Algorithm:
Input:P�	� P� e
Output: Q � eP

1. Obtain the signed digit recording f of e.
2. if fk

� 1 then Q � P else Q � O
3. for i � k � 1 downto 0

3.1 Q � Q � Q
3.2 if fi

� 1 then Q � Q � P
if fi

� 1̄ then Q � Q � P
4. Return(Q)

One can further increase the efficiency of the algorithm by considering more than 1 bit at a time using window
techniques rather than binary method. Lot of other point multiplication algorithms are also in existance. Among them,
one important and efficient algorithm is Montgomery point multiplication algorithm.

7



The methods mentioned above in this section correspond to point multiplication algorithms for a given arbitrary
point. But if we know the point before hand and the point is fixed and if we can spare some memory for precom-
putation, more efficient point multilication algorithms can be devised. The following two algorithms given are good
example of these category of algorithms.

Fixed-Base Windowing Method:
Input: Window width w, d � � t � w � , k = (kd 
 1 ����� � � k1 � k0)2w, P � GF

�
2m �

Output: kP

1. Precompute Pi
� 2wiP, 0 � i � d � 1

2. A � O, B � O
3. For j from 2w � 1 downto 1 do

3.1 For each i for which ki
� j do: B � B � Pi

3.2 A � A � B
4. Return(A)

Fixed-Base comb Method:
Input: Window width w, d � � t � w � , k = (kd 
 1 ����� � � k1 � k0)2w, P � GF

�
2m �

Output: kP

1. Precompute [aw 
 1 ����� � � a1 � a0]P
�

(aw 
 1 ����� � � a1 � a0) � Zw
2

2. By padding k on the left with 0’s if necessary, write k � Kw 
 1 � ����� � K1 � K0, where each K j is a bit string of length d.
Let K j

i denote the ith bit of K j

3. Q � O
4. For i from d � 1 downto 0 do

4.1 Q � 2Q
4.2 Q � Q � �Kw 
 1

i ������� � K1
i � K0

i 
 P
5. Return(Q)

5. Summary

It can be seen from the previous section that for point multiplication, the Fixed-base comb method is the fastest given
that the point to be multiplied is know before hand. For a variable point, the point multiplication using the Window
based canonical reading method is the fastest. Also, according to the practical results that are provided in [1], using
projective coordinates for these methods yields the most optimized algorithms. For window based canonical reading
method, using mixed coordinates of Jacobian and Chudnovsky yields the fastest algorithm where as using mixed
coordinates with Jacobian and Affine yields fastest algorithm for Fixed-Base comb method. For integer multiplication
in prime fields, the algorithm presented in section 2.3 performs well. It is considered faster than the Karasthubha
algorithm for integer multiplication. In binary field multiplication, Left-to-Right comb method with windowing yields
the fastest algorithm followed by Karatsuba algorithm. For Inversion in binary field, the extended Euclidian algorithm
performs well when compared to other algorithms.

[1] and [6] gives the exact timings of the above algorithms implemented on a 32 bit architecture for NIST recom-
mended curves. I can be observed that using projective coordinates instead of affine coordinates can gain significant
amount of efficiency mainly due to the ovehead reduced by replacing Inversion with multiplication. It can also be
noted that faster algorithms for specific kinds of curves like the kolblitz curves can be disigned and also, enhancing
the mentioned algorithms depending on the specific architecture, leads to some performance improvement.

References
[1] M. Brown, D. Hankerson, J. Lopez, and A. Menezes. Software implementations of nist elliptic curves over prime

fields. Technical report, 2001.

[2] Ç. K. Koç. Classnotes - elliptic curve cryptosystems, oregon state univerity.

[3] Ç. K. Koç. Classnotes - high-speed implementations of rsa and elliptic curve cryptosystems, oregon state uni-
verity.

[4] Kenneth Giuliani. Elliptic curves over finite fields. Technical report, 6 December 1999.

[5] Yongfei Han, Peng-Chor Leong, Peng-Chong Tan, and Jiang Zhang. Fast algorithms for elliptic curve cryptosys-
tems over binary finite field. Technical report, 1999.

8



[6] H. Hankerson, J. L. Hernandez, and A. Menezes. Software implementation of elliptic curve cryptography over
binary fields. Second International Workshop, Worcester, MA, USA. Springer Verlag, LNCS Nr. 1965, August
17–18 2000.

[7] G.-A. Kamendje J. Groschadl, E. Oswald, and R. Posch. Elliptic curve cryptography in practice the concept of
the austrian citizen card for e-government applications. Technical report, 2000.

[8] BBN Technologies Jeffrey L. Vagle. A gentle introduction to elliptic curve cryptography. Technical report, Nov
21 2000.

[9] Don. B. Johnson and Alfred J Menezes. Elliptic curve dsa (ecdsa): an enhanced dsa. Technical report, 1997.

[10] M.MATSUI T.HASEGAWA, J.NAKAGIMA. A small and fast software implementation of elliptic curve cryp-
tosystems over gf(p) on a 16 bit microcomputer. Technical report, January 1999.

[11] E. De Win, A. Bosselears, S. VAndenberghe, P. De Gersem, and J. Vandewalle. A fast software implementation
for arithmetic operations in g f

�
2n � . Technical report, 1996.

9


