
1

Analysis of Random Number Generators
Parijat Naik

Department of Computer Science
Oregon State University

naikpa@cs.orst.edu

Abstract— In this paper, we compare the different meth-
ods of Random number generation used in practice and a
comparison of their efficiency. The paper focuses on the
techniques used for RSA, SHA-1 and MD5. The results
also provide a basis for a better Crypto Coprocessor.

I. Introduction

Random number generators are used for generating an
array of numbers that have a random distribution. The
random number generators used in practice do not actually
generate numbers, which are random. These programs use
deterministic algorithms and are actually pseudo-random
number generators, because the arrays of numbers pro-
duced are deterministic and we can only approximate ran-
dom numbers.

Random number generators require the user to specify
an initial value, or seed. Initializing the generator with the
same seed will give the same sequence of random numbers.
If we want a different sequence, we just initialize using
a different seed. Some generators come up with different
seeds by initializing using the clock time, but this is not
recommended since it is then not possible to reproduce the
results.

Since random number generators do not produce truly
random sequences, the generator used may affect the re-
sults. Many widely used random number generators have
been shown to have quite poor randomness properties that
lead to incorrect results in certain applications. It is bet-
ter to use a random number generator that has been thor-
oughly tested and recommended. For applications in which
random numbers are only used occasionally, the quality of
the generator will probably not matter, however in appli-
cations which use a lot of random numbers, such as Monte
Carlo simulations, the quality of the generator is crucial
and poor generators can produce incorrect results.

A. True Random Number Generators

Security protocols heavily depend on the randomness of
keys; RNG for cryptographic applications must be such
that the third party should not be able to make any pre-
dictions about outputs. Most of the existing programs use
strong cryptographic algorithms, an anomaly in this pro-
cess is that they all start from the random seeds that are
not truly random weakening the overall system robustness
in security. Some examples are using different timing of
system hard disk drives, system status register, two differ-
ent clocking speeds, movement of the mouse, number of
current processes being executed, etc.

A random number generator should use non-deterministic
finite automation to generate truly random numbers. This
task is usually associated with an analog source. The usual
method is to amplify noise generated by a semi-conductor
diode and feed it to a Schmitt trigger, the output is sam-
pled to get a series of statistically independent bits. These
are then grouped as bytes giving us a random distribution.

White noise is a sound with an irregular, random wave-
form. When all audible sound frequencies are represented
with the same strength it is called white noise. This des-
ignation is in analogy to vision: white light contains all
visible frequencies of light. Such sources can generate true
random numbers, but are difficult to embed in a chip.

B. Pseudo Random Number Generators

Pseudo Random Number Generators use an algorithm
to generate numbers, which behave like genuine random
numbers, used for simulations of random processes and sta-
tistical methods. Usually a good pseudo-random number
generator should work, as one would expect a true random
generator to work. Perfect randomness is a scarce resource,
Currently pseudo random generators for all cryptographic
applications it is sufficient to use pseudo random bits.

A PRBG can be considered to be cryptographically
strong if it passes all polynomial time statistical tests. A
PRGB is provably secure, if its security can be reduced
to a well-established conjectured hard problem. Pseudo-
random number generators are often based on crypto-
graphic functions like block ciphers or stream ciphers. For
instance, iterated DES encryption starting with a 56-bit
seed produces a pseudo-random sequence.

A PRBG provides applications with a stream of num-
bers having properties for system security: It should be
impossible for a third party to predict the output of the
random number generator even with knowledge of previous
output. The generated numbers should not have repeating
patterns which means the PRNG should have a very long
cycle length. A PRBG is normally just an algorithm where
the same initial starting values will yield the same sequence
of outputs.

C. Practical Constraints

One should understand that the numbers generated by
current random number generators are not random, but are
instead pseudo-random. Since PRBG’s use deterministic
algorithms, they cannot be completely uncorrelated, thus
as the numbers they produce are reproducible, they can-
not be truly random. However most of todays applications

2

that use random numbers require that the random num-
ber generator be of highest quality, such that they produce
sequences that satisfy the standard statistical tests for ran-
domness. [1][2] show that even if random number genera-
tors satisfy statistical tests for randomness, they have been
sometimes found to be unreliable, especially for certain
Monte Carlo applications. Such problems with PRBG’s on
sequential, as well as vector computers, get worse on par-
allel supercomputers where parallel PRBG’s are required.
Parallel PRBG’s can probe other qualities of random num-
ber generation, such as inter-processor correlations, which
do not appear on serial random number generators.

II. IBM 4758

The IBM 4758 Secure Crypto Coprocessor is a hardware
card that plugs into PCI slots. The Coprocessor secure
processing environment contains a 486-compatible micro
coprocessor; it contains hardware to perform DES, ran-
dom number generation, and modular math functions for
RSA and similar public-key cryptographic algorithms. Se-
cure code loading that enables updating of the functional-
ity while installed in application systems. IBM Common
Cryptographic Architecture (CCA) and PKCS]11 as well
as custom software options. See Figure for a complete list
of specifications. It also has protective shields, sensors,
and control circuitry to protect against a wide variety of at-
tacks against the system. More specifically the 4758 is pro-
tected against attacks involving probe penetration, power
sequencing, radiation and temperature manipulation, con-
sistent with the FIPS 140-1 Level 4 Certification. The ba-
sic element of the protective layer is a grid of conductors,
which is monitored by circuitry that can detect changes in
the properties of the conductors. The conductors them-
selves are non-metallic and closely resemble the material
they are embedded in. This makes discovery, isolation and
manipulation all the more difficult. These grids are ar-
ranged in several layers and the sensing circuitry can detect
accidental connections between layers as well as changes in
an individual layer. The sensing grids are made of flexible
material and are wrapped around and attached to the se-
cure processor package.[3]

DES Hardware Support
RSA,DSS Software with hardware Support
Hashing SHA - 1 in hardware
Random Numbers Noise based hardware RNG

TABLE I

Cryptographic Features of the IBM 4758

The Coprocessor generates a unique public key pair in
the last production step, which is stored in the device. The
tamper detection circuitry is activated at this time and re-
mains active throughout the useful life of the Coprocessor,
protecting this private key, as well as all other keys and
sensitive data. The Coprocessor public key is certified at
the factory by a global IBM private key and the certificate

is retained in the Coprocessor. Subsequently, the Copro-
cessor private key is used to sign the Coprocessor status
responses which in conjunction with the public key certifi-
cate, demonstrate that the Coprocessor remains intact and
is genuine. From the time of manufacture, if the tamper
sensors are ever triggered, the Coprocessor zeros its critical
keys, destroys its certification, and is rendered inoperable.

A. The Algorithm

RGn,c : Zp−1 → Z∗p (1)

RGn,c(s) = ĝ(sdiv2n−c)gs1modp (2)

We do a modular exponentiation in Z∗p with base g, after
zeroing the bits from 2, ...,n-c of the input s. The function
RG induces a distribution over Z∗p in the usual way. We
denote it with RGn, c, the following probability distribu-
tion over Z∗p

ProbRGnc[y] = Prob[y = RGn,c(s); s ← Zp−1] (3)

Thus the algorithm receives the random element s in
Zp−l as a seed and then it iterates the function RG on it.
The pseudo-random bits outputted by the generator are
the bits ignored by the function RG. The output of the
function RG serves as the new input for the next iteration.

B. Efficiency Analysis

According to the analysis conducted by [4], taking n =
1024 and c = 160, We obtain 863 bits making roughly 240
multiplications, yielding a rate of about 3.5 bits per mod-
ular multiplication. The modular exponentiations are all
computed over the same basis ĝ. This feature allows us
to precompute powers of ĝ and store them in a table, and
then use these Values to compute ĝ’s for any s.[3]

Thus using the choice of parameters for 160-bit expo-
nents, we can get roughly 40 multiplications with a table
of only 12 Kbytes. Yielding a rate of more than 21 pseudo-
random bits per multiplication. A large memory imple-
mentation (300 Kbytes) yields a rate of roughly 43 pseudo
random bits per multiplication.

III. Intel 82802 Firmware Hub

The Intel Firmware Hub integrates a Random Number
Generator that utilizes thermal noise generated as a re-
sult of the inherently random quantum mechanical prop-
erties of silicon, in order to modulate a proven hardware
RNG design. Internal circuitry is included to enhance the
entropy of the output. Since the output of the RNG is
non-deterministic, it is an excellent choice for cryptography
applications, but it also is a convenient source of random
numbers for mathematics, modelling, graphics algorithms,
artificial intelligence, entertainment, and many other appli-
cations. The fact that it is a component of the platform and
may be utilized remotely on a locked-away server makes it

3

an ideal (and much more reliable) source of entropy for ap-
plications that, in the past, have relied exclusively on a key
press or other environmental input.[5]

This Random Number Generator (RNG) is designed
to fill an 8-bit register, a bit at a time, with hardware-
generated random numbers. When this register is full, a
flag bit in the RNG data status register transitions to a 1,
indicating that a valid random number is ready to be read.
This bit will immediately reset to 0 upon reading the RNG
data register.

A. Random Number Generation

The Intel RNG is based on the four tests whose results
were evaluated by Intel and used in the 8202[3]

Fig. 1. Intel RNG Block Diagram

A.1 Noise Source

The Intel RNG primarily samples thermal noise by am-
plifying the voltage measured across undriven resistors. In
addition to a large random component, these measure-
ments are correlated to local pseudorandom environmental
characteristics, such as electromagnetic radiation, temper-
ature, and power supply fluctuations.

A.2 Dual Oscillator Architecture

The Intel RNG uses a random source that is derived from
two free-running oscillators, one fast and one much slower.
The thermal noise source is used to modulate the frequency
of the slower clock. The variable, noise-modulated slower
clock is used to trigger measurements of the fast clock.
Drift between the two clocks thus provides the source of
random binary digits.

A.3 Digital Post Processing

The initial random measurements are processed by a
hardware corrector based on a concept proposed by John
von Neumann to produce a balanced distribution of 0 and
1 bits.11 A von Neumann corrector converts pairs of bits
into output bits by converting the bit pair [0,1] into an

output 1, converting [1,0] into an output 0, and outputting
nothing for [0,0] or [1,1].

A.4 Statistical Evaluation

Wide arrays of statistical tests were performed both be-
fore and after the digital post-processing. Tests on pre-
corrected data help to identify characteristics that might
be difficult to detect after the correction process. All sta-
tistical tests were performed on data prior to the software
librarys SHA-1 mixing, as the SHA operation would mask
nonrandom characteristics.

A large number of generalized statistical tests for ran-
domness have been proposed, such as the DIEHARD12
specification, FIPS 140-113,and Knuths14 tests. The test
suite for the Intel RNG included the following: Block
Means Spectral analyzes Random walk test Block Mean
correlations, 1-129 Block means Periodogram Spectral an-
alyzes; hi, med, lo smoothing Spectral analyzes, adjusted
for correlations autocorrelations, blocking and no block-
ing 8,16-bit Maurer test 4,8,16-bit Monkey test 4,8,16-bit
Goodness of Fit Komolgorov-Smirnov test of trend CR/LF
test Overall mean Column means Run length variances
FIPS 140-1 test suite

B. Efficiency Analysis

Federal Information Processing Standards (FIPS) are is-
sued by the National Institute of Standards and Technol-
ogy (NIST), the body responsible for developing technical
standards and guidelines for federal information resources.
The Secretary of Commerce for use throughout the federal
government to protect sensitive, unclassified information
approves these standards and guidelines. FIPS 140-1 cov-
ers security requirements for cryptographic modules and
specifies recommended statistical tests for random number
generators. Each of the tests is to be performed on 20,000
consecutive bits of output from the random number gener-
ator. If any of the four tests fail, then the random number
generator is deemed to be in an error condition.

IV. Efficiency Comparison

This section compares the two RNG’s, we performed two
theorotical tests; discrepancy and the spectral test.

A. Development of a Fast Discrepancy Code

The uniformity of a sequence of points is measured in
terms of its discrepancy.
The L∞ discrepancy is defined by:

DN =
SUP

JeE
| RN (J) | (4)

The L2 discrepancy is defined by

TN = [
∮

(x,y)eI2d,x1<y1

RN (J(x, y))2dxdy]
1
2

(5)

Where RN(J) is the Monte Carlo quadrature error in
measuring the volume of subset J of Id. Similarly, the star

4

discrepancy is defined over rectangular sets with one ver-
tex at 0. Usually the computation of the L2 discrepancy of
N d-dimensional points is O(N2). The computation of the
L∞ discrepancy of N d-dimensional points is O(Nd). The
project is to try to find an efficient way to reduce the com-
putational cost of discrepancy to measure the uniformity
of multi-dimensional random sequence.[6]

B. Development of A Fast Spectral Code

Spectral test is one of the theoretical tests that provides
a way to check the quality of RNGs with a lattice structure
such as linear congruent RNGs. Compared with theoretical
test, empirical testing consumes more time and resources,
also we will have to carry out these tests with samples of
similar size and in similar dimensions as in our original sim-
ulation. For this reason, theoretical figures of merit have
been designed that allow to assess RNGs. The spectral
test embodies aspects of the both the empirical and the-
oretical tests because it deals with properties of the full
period of the sequence also requires a computer program
to determine the results. The spectral test quantity has a
nice geometric interpretation which computes the maximal
distance between successive parallel hyper planes covering
all possible points Xn that the RNG produces. This inter-
pretation leads to very efficient algorithms to compute the
value of the spectral test.[6]

C. Overall Results

Tests were performed by Cryptography Research on at
least 80 megabits of continuous RNG output. The tests
identifying any statistically significant deviation from val-
ues expected from a perfect random source were minor de-
viations in tests involving spectral analysis. The analysis
by Cryptography Research placed particular emphasis on
areas that would identify statistical biases or failure modes
in the RNG’s. The largest nonrandom characteristic de-
tected in both the generators was the bias in the ratio of
0 and 1 bits. In devices operating under extreme envi-
ronmental conditions, bit frequencies were observed on the
order of .510-2. Data with a 1 bias has 0.9997 bits of en-
tropy per bit. Applications directly accessing the RNG’s
should make more conservative assumptions about the out-
put quality. Although their estimates indicate that the
hardware provides over 0.999 bits of entropy per output bit,
a conservative assumption of bit of entropy per output bit
can generally be used without any significant performance
impact.

References

[1] A. De Matteis and S. Pagnutti, “Long-range correlations in linear
and nonlinear random number generators,” Parallel Computing,
vol. 14, pp. 207–210, 1990.

[2] T. L. Jordan B. Smith P. Frederickson, R. Hiromoto and
T. Warnock, “Pseudo-random trees in monte carlo,” Parallel
Computing, vol. 1, pp. 175–180, 1984.

[3] N. Koblitz, “The intel random number generator,” Cryptography
Research, Inc. White Paper Prepared For Intel Corporation, Apr.
1999.

[4] J. Dyer N. Howgrave-Graham and R. Gennaro, “Pseudo-random
number generation on the ibm 4758 secure crypto coprocessor,”
in Cryptographic Hardware and Embedded Systems - CHES 1999,

Ç. K. Koç and C. Paar, Eds. 1999, Lecture Notes in Computer
Science No. 2162, pp. 93–101, Springer, Berlin, Germany.

[5] Intel Corporation, “Intel 82802ab/82802ac firmware hub (fwh)
datasheet,” Cryptography Research, Inc. White Paper Prepared
For Intel Corporation.

[6] Robert Davies, “True random number generators,”
http://webnz.com/robert.

