A Study on NTRU Public Key Cryptosystem

Peroly Natesan
Department of Electrical & Computer Engineering,
Oregon State University, Corvallis, Oregon 97331 -USA.
E-mail: natesan@engr.orst.edu

Abstract— This paper is a study on the new public key
cryptosystems, NTRU. This paper gives an introduction to
NTRU, its requirements, its advantage and its application.
This paper throws light on how NTRU features reasonably
short, easily created keys, high speed, and low memory re-
quirements. The NTRU security which comes from the in-
teraction of the polynomial mixing system with the inde-
pendence of reduction modulo two relatively prime integers
p and q is studied. Some of the methods that may be used
to increase the speed and efficiency of the NTRU is also
studied.

KEYWORDS: NTRU, RING-BASED PUBLIC KEY
CRYPTOSYSTEM, SECURITY ANALYSIS, LAT-
TICE ATTACK

I. INTRODUCTION

With the exponential growth of computing power and
electronic system, there has been considerable interest and
research going on in the creation of efficient and computa-
tionally inexpensive public key cryptosystems since Diffie
and Hellman [1] explained how such systems could be cre-
ated using one-way functions. The most widely used public
key system currently is RSA, created by Rivest, Shamir and
Adelman in 1978 [4] and is based on the difficulty of factor-
ing large numbers. Other cryptosystems include McEliece
system [2] which relies on error correcting codes. Another
recent system of Goldreich, Goldwasser, and Halevi [3] is
based on the difficulty of lattice reduction problems.

The NTRU Public Key Cryptosystem is based on ring
theory [5] and relies for its security on the difficulty of solv-
ing certain lattice problems. A ring is a mathematical ob-
ject which has two algebraic operations, addition and mul-
tiplication.

In NTRU, the encryption procedure uses a mixing sys-
tem based on polynomial algebra and reduction modulo
two numbers p and q. The decryption procedure uses
an unmixing system whose validity depends on elementary
probability theory.

The two main reason for the security of NTRU public
key cryptosystem are
1. The security comes from the interaction of the poly-
nomial mixing system with the independence of reduction
modulo p and g.

2. It is very difficult to find extremely short vectors for
most lattices.

Also NTRU fits into the general framework of a proba-
bilistic cryptosystem which means that encryption includes

Author is a graduate student at the Department of Electrical &
Computer Engineering, Oregon State University, Corvallis, Oregon
97331. E-mail: natesan@engr.orst.edu

a random element, so each message has many possible en-
cryptions. One of the major advantage of NTRU is Encryp-
tion and decryption are extremely fast, and key creation is
fast and easy.

Comparison of NTRU and RSA Speed and Key Length:
NTRU takes O(N?) operations to encrypt or decrypt a
message block of length N, making it considerably faster
than the O(IN?3) operations required by RSA. NTRU key
lengths are O(N), which is better than O(N?2) key lengths
as required by other ”fast” public keys systems such as

2],[3]-
II. DEScRIPTION OF NTRU ALGORITHM
A. An Overview of NTRU

A general formulation of the NTRU Public Key Cryp-
tosystem uses a ring R and two (relatively prime) ideals p
and q in R. A rough outline of the key creation, encryption,
and decryption processes is as follows:

o Key Creation

Bob creates a public key h by choosing elements f,g € R,
computing the mod ¢ inverse f;* of f, and setting

h = f71 % g(modyg).

Bob’s private key is the element f. Bob also precomputes
and stores the mod p inverse f,° Lof f.

« Encryption

In order to encrypt a plaintext message m € R using the
public key h, Alice selects a random element r € R and
forms the ciphertext

e =71 % h+ m(modyq).

¢ Decryption

In order to decrypt the ciphertext e using the private key
f, Bob first computes

a = [xe(modq).

He chooses a € R to satisfy this congruence and to lie in a
certain prespecified subset Ra of R. He next does the mod
p calculation

£y % a(modp),

and the value he computes is equal to m modulo p.

III. AN EXxAMPLE IMPLEMENTED USING MATLAB
An Example that was implemented and verified using
MATLAB is given below

NTRU ALGORITHM
N=11 p=3 ¢=32

KEY GENERATION:

« Bob first randomly chooses two ”small” polynomials f(x)

and g(x) in the ring of truncated polynomials R.

o For the purposes of this section, we take df =4 d, = 3.
f=-14+4X4+X2-X*4+ X6+ X°_—Xx10
g=-1+X2+ X3+ X5—X8-X10

o Compute the inverse of f modulo g and the inverse of f

modulo p.

f * fg = 1(modulog) and f * fp = 1(modulop)
fp=1+2X +2X34+2X* 4+ X5+ 2X7
+X38 + 2X°(modulo3)
f;=5+9X +6X%+16X3 +4X*+ 15X° + 16X°
+22X7 4+ 20X8 + 18X? + 30X 10(modulo32)

« Bob computes the Public Key
h = pfq * g(modulo32)
h=8+25X +22X%2+20X3+12X*+24X5+15X°

+19X7 +12X% + 19X° + 16X 10(modulo32)

ENCRYPTION:
o Alice uses the message m, her randomly chosen polyno-
mial r, and Bob’s public key A to Compute the polynomial
e = r x h + m(moduloq)
The polynomial e is the encrypted message which Alice
sends to Bob.
— Blinding value rdr = 3
r=—-1+X24+X3+X*-X5-X"
— Now, suppose Alice wants to send the message
m=-1+X3-X*- X84+ X%+ Xx10
— Encrypted message e is
e = r * h + m(moduloq)
e=14+11X +26X2 +24X° + 14X* + 16X°
+30X%+7X"7+25X8 +6X° + 19X (modulo32).

DECRYPTION:
— Bob uses his private polynomial f to compute the poly-
nomial
a = f x e(modulog).
a=3-7X—-10X2-11X3+10X* +7X5+6X°
+7X7 +5X8 — 3X? — 7X'°(modulo32).
— Next Bob computes
b = a(modulop).
b= -X-X+X3+X*+X°+X" - X8 -
X1%(modulo3).
— Bob uses f,, the other part of his private key, to com-
pute
¢ = fp * b(modulop)
c=-1+X%-X*— X8+ X%+ X'(modulo3)
m=—-1+X3-X*- X%+ X%+ X'%(modulo3)

IV. STANDARDS

The IEEE P1363 project develops Standard Specifica-
tions For Public-Key Cryptography, towards the goal of
issuing a series of IEEE standards documents. The core
NTRU algorithms are currently being standarized in the
ieee P1363 wroking group[8]. IEEE P1363.1 will specify
cryptographic techniques based on hard problems over lat-
tices. These techniques may offer tradeoffs in operating

characteristics when compared with the methods already
specified in IEEE 1363-2000 and draft P1363a. The pur-

pose is to provide: (1) a reference for specification of a
variety of techniques from which applications may select,
(2) the relevant number-theoretic background, and (3) ex-
tensive discussion of security and implementation consid-
erations so that a solution provider can choose appropriate
security requirements for itself.

V. COMPARISION OF NTRU WITH OTHER
SYSTEMS

¢ Reason for NTRUEncrypt much faster than RSA, El
Gamal, and ECC:
The NTREncrypt cryptosystem is much faster than expo-
nentiation systems such as RSA, El Gamal, and ECC. One
reason is that the basic operations used by NTRUEncrypt
involve manipulation of small numbers, generally numbers
less than 255. Exponentiation systems, on the other hand,
require numbers with hundreds of digits. A private key for
any cryptosystem can be thought of as a long list of bits,
for example key = (1,1,0,1,0,0,1,0,0,1,1,1,1,0,0,0,1,0,1,0,
........ ,0,0,1,0,1,1,1,0,0,1,0,1). The number of 0’s and 1’s
in the list is called the bit-length of the key. A typical
key for NTRUEncrypt, RSA, or El Gamal might be be-
tween 1000 and 2000 bits long, so it’s not a difference in
key lengths that makes NTRUEncrypt faster. ECC uses
even shorter keys. Instead, its how NTRUEncrypt uses
the key. When RSA, El Gamal, or ECC want to encrypt
a message, they need to do lots of computations involv-
ing every single bit in the key; so they need to manip-
ulate the entire long key. By way of contrast, NTRU-
Encrypt breaks the key up into small chunks, generally
consisting of 7 or 8 bits each. For example, NTRUEn-
crypt key = (1,1,0,1,0,0,1,0) — (0,1,1,1,1,0,0,0,) —....—
(1,1,1,0,0,1,0,1). When encrypting a message, NTRUEn-
crypt works with the key chunks one at a time, so it never
needs to manipulate extremely long lists of bits. This
makes for speedy computations, even on low power pro-
cessors. A careful mathematical analysis shows that for
keys consisting of around N bits, the RSA, El Gamal, and
ECC systems require on the order of N3 operations to en-
crypt or decrypt a message, while NTRUEncrypt requires
only on the order of N2 operations to encrypt or decrypt a
message.
o Performance figures for NTRU Encryption, Decryption,
Signing, Verification and Key Generation relative to RSA
and ECC (for equivalent of 1024 and 2048 RSA):

Here are the benchmarks for NTRU-251 against RSA
1024 and ECC over GF (2!63):

TABLE I
NTRU-251 v RSA-1024 on 800 MHz PENTIUM III:

NTRU RSA | NTRU | Advantage
Encrypt | Blocks/sec | 22727 | 1280 17to 1
Decrypt | Blocks/sec | 10869 | 110 99 to 1

In the real world situation, a single application of the
public key cryptosystem consists of three operations:
Generate Key / Encrypt One Block / Decrypt One Block

If we compare NTRUEncrypt N=263 with RSA 1024 in
this situation, we find that NTRUEncrypt is far more that
100 times faster. Indeed, NTRUEncrypt key pair gener-
ation takes about 3.0 milliseconds, while Crypto++ takes
over 1 second to generate an RSA key pair (on our 300 MHz
machines), so the NTRUEncrypt speed advantage tops 300.
The following table gives timing comparisons for NTRU-
Encrypt and RSA at comparable security levels.

System Blocks/Second | NTRUEn vs RSA
NTRUEncrypt 263 | 645.6 27.6 times faster
RSA 1024 23.4 27.6 times faster
NTRUEncrypt 503 | 246.8 68.6 times faster
RSA 2048 3.6 68.6 times faster

VI. SECURITY ANALYSIS

An NTRU cryptosystem depends upon three integer pa-

rameters (N,p,q) and four sets Ly, Ly, Ly, Ly, of polyno-
mials of degree N-1 with integer coefficients. We work in
the ring R = Z[X]/(X™ —1). The paper describes the
following possible attacks and the security of NTRU,
1. Brute force attack: Under Brute force attack, An at-
tacker can recover the private key by trying all possible
[€ Ly and testing if f x h=!(modg) has small entries.
Similarly, an attacker can recover a message by trying all
possible ¢ € Ly and testing if e — ¢ * h(modg) has small
entries. The security level is given by

1
L
(keysecurity) = \/# 1 [- 2d

JFL =

2. Meet-in-the-middle attacks. An encrypted message
looks like e = ¢ * h + m(modg). If one splits f in half, say
f = f1 + f2, and then one matches f1 x e against — f * e,
looking for (f1, f2) so that the corresponding coefficients
have approximately the same value. Hence, in order to ob-
tain a security level of 289, one must choose f, g and ¢ from
sets containing around 2!%° elements.

3. Lattice Based attack: Consider a 2N-by-2N matrix com-
posed of four N-by-N blocks. Let L be the lattice generated
by the rows of this matrix. The determinant of L is ¢V .
Since, the public key is A = g * f~!, the lattice L w111
contain the vector 7 = (af,g), by which we mean the 2N
vector consisting of the N coefficients of f multiplied by «,
followed by the N coefficients of g.

An implementation of a lattice reduction algorithm will
have the best chance of locating 7, or another vector whose
length is close to 7, if the attacker chooses a to maximize
the ration s7.

¢y, is the ratio of length of the target vector to the length
of the expected shortest vector and is given by

\/27re (mod f2)
Cp =

M
(Messagesecurity) = N = 2d

(mod g2)

N,

¢, may be viewed as a measure of how far the associated
lattice departs from a random lattice, for a given pair (f, g)
used to set up the cryptosystem.

Another important constant ¢, gives a measure of the vul-
nerability of an individual message to a lattice attack.

\/ 2we (mod ms2)
Cm =
Nq

(mod ¢2)

As ¢, and ¢, becomes closer to 1, the vulnerability of at-
tack for private key and message becomes very less. The
authors also made c¢,,, approximately equal to ¢, to make
attacks on h and m equally difficult.

Measurement of security of NTRUEncrypt:

The hard problem underlying the NTRUEncrypt Public
Key Cryptosystem is that of finding a very short vector in
a lattice of very high dimension. The best way known to
attack NTRUEncrypt is to use the LLL lattice reduction
method to search for the target vector. In order to test the
security of NTRUEncrypt, they used LLL to run numer-
ous tests on NTRUEncrypt lattices of various dimensions
and graphed the amount of time it took to find the tar-
get vector. From this graph they extrapolated the running
time for lattices of higher dimension and used these figures
to select appropriate parameters for NTRUEncrypt. The
following table gives estimated breaking times for NTRU-

Encrypt and RSA at various security levels. (Times are
rounded to the nearest 10 MIPS-years.)
Cryptosystem | Security Level EBT
RSA 512 bits 10° MIPS yrs
NTRUEncrypt | N = 167 10% MIPS yrs
RSA 1024 bits 1012 MIPS yrs
NTRUEncrypt | N = 263 101* MIPS yrs
RSA 4096 bits 1033 MIPS yrs
NTRUEncrypt | N = 503 10%% MIPS yrs

VII. PRACTICAL IMPLEMENTATION OF NTRU

The authors presented three distinct sets of parameters
which yielded three different levels of security.

Case A: Moderate security This case is suitable for situa-
tions in which the intrinsic value of any individual message
is small and in which keys will be changed with reasonable
frequency. The examples are television, pager, and cellular
transmissions. (N, p,q) = (107,3,64) Ly = L(15,14), L, =
L(12,12),L4 = L(5,5)(i.e.,d = 5).

The above things give key sizes Private Key = 340 bits
and Public Key = 642 bits,

And security levels K eysecurity = 250 and MessageSecurity =

226.5

Substituting the above values into the appropriate for-
mulas yields lattice values C;, = 0.257,¢,, = 0.258, and
s = 0.422q.

Case B:

Ly = L(61,60), L, = L(20,20), Ly = L(18,18)(i.e.,d =
18).

The above things give key sizes Private Key = 530 bits
and Public Key = 1169 bits,

And security levels Key security = 2%2-° and Message
Security = 277°

Substituting the above values into the appropriate for-
mulas yields lattice values C} = 0.236,c,, = 0.225, and
s = 0.296q.

Case C:

(N,p,q) = (503, 3,256)

L; = L(216,215), Ly, = L(72,72), Ly = L(55,55)(i.e.,d =
55).

The above things give key sizes Private Key = 1595 bits
and Public Key = 4024 bits,

And security levels Key security = 228° and Message
Security = 2170

Substituting the above values into the appropriate for-
mulas yields lattice values ¢, = 0.182,¢,, = 0.160, and
s = 0.365¢.

Optimization of NTRU:

The following optimization methods were used to in-
crease the speed and efficiency of the NTRU PKCS[6],
1. To guard against the chosen ciphertext attacks padding
techniques of Fujisaki and Okamoto and scrambling of mes-
sage is done.
2. The most time consuming part of NTRU encryption pro-
cess involves one product r+hmodq and decryption requires
computation of two products f x emodg and f, L x amodp
and key creation process involves computation of the in-
verses fy' and f'. If we choose the element f to have
the form f = 14 P x f; with f; € R, then no need to
compute inverse modulo p and second computation in de-
cryption process also disappears as an f of this form has
the property f, 1 = 1.
3. Through the use of Low Hamming weight polynomials
the encryption and decryption can be speeded up [7].

VIII. APPLICATION

The growth of consumer and wireless networking com-
puting devices is set to explode over the next decade as
consumers and enterprises increasingly demand access to
previously desktop-bound applications and services across
a wide range of handheld devices. Consumers will use
smart cards, mobile phones, RFID tags/labels, and wire-
less networking devices on a regular basis for payments,
digital media download and playback, home networking,
and securing physical and logical access. Secure commu-
nications and trusted devices are a fundamental building
block for these applications and services. NTRU security
is designed to meet the clear and fundamental need for
small, fast, and power-efficient security technology for all
of tomorrow’s mobile computing devices, including;:

o Smart Cards
« RFID tags and labels
o Mobile phones

o Wireless networking products, including 802.11 and
802.15 devices

« Media players

e PDAs

IX. CONCLUSION

Thus as observed NTRU is Easy to program, Easy to
build into hardware, Ideal for Digital Signal Processors
(DSPs) and NTRU Requires Less memory (RAM) in soft-
ware,Less storage in software, Fewer gates in hardware.
NTRU easily fits into Low power smart cards, Handheld
devices, Cellular telephones, Set top boxes. As seen from
the section, comparison of NTRU with other current sys-
tems, NTRU has great advantage of being Fast and easy
key generation and security is also superior then another
comparable systems.

REFERENCES

[1] W. Diffie, M.E. Hellman “New directions in cryptography,” in ,
IEEE Trans. On Information Theory 22 (1976), 644-654

R.J. McEliece “A public-key cryptosystem based on algebraic
coding theory,” in ,JPL Pasadena, DSN Progress Reports 43-44
(1978), 114-116

O. Goldreich, S. Goldwasser, S. Halevi “Public-key cryptosys-
tems from lattice reduction problems,” in , MIT - Laboratory for
Computer Science preprint, November 1996

R. L. Rivest, A. Shamir, L. Adleman “A method for obtaining
digital signatures and public key cryptosystems,” in , Communi-
cations of ACM 21 (1978), 120-126.

Jeffrey Hoffstein, Jill Pipher, Joseph H. Silverman ‘NTRU: A
Ring-Based Public Key Cryptosystem,” in ,Algorithmic Number
Theory (ANTS III), Portland, OR, June 1998, J.P. Buhler (ed.),
J. Hoffstein, J. Silverman “Optimizations for NTRU,” in , Public-
Key Cryptography and Computational Number Theory (Warsaw,
September 11-15, 2000)

J. Hoffstein, J. Silverman “Random Small Hamming Weight
Products With Applications to Cryptography,”

[8] IEEE P1363 Working Group “http://grouper.ieee.org/groups/1363/,”

