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Abstract— Public key cryptography gained increasing attention
from both companies and the end users who wish to use this
emerging technology to secularize a wide variety of applications.
A major consequence of this trend has been the growing signifi-
cance of the public-key smart cards. A smart card is a tiny secure
cryptoprocessor embedded within a credit card-sized or smaller
(like the GSM SIM) card which provide encryption, decryption
as well as key generation within it’s security perimeter. RSA
is a simple and easy to implement public key cryptographic
algorithm. Today RSA keys range from 512 bits to 2048 bits
and some bodies envision 4096-bit RSA keys in near future. In
this paper, I will present a study of efficient algorithms involved
in on-board RSA key generation.

I. I NTRODUCTION

It has been said that smart cards will one day be as important
as computers are today. This statement contains a bit of an
error because it implies that smart cards are not computers,
when in fact, they are. A smart card - a type of chip card - is
a plastic card embedded with a computer chip that stores and
transacts data between users. This data is associated with either
value or information or both and is stored and processed within
the card’s chip, either a memory or microprocessor. The card
data is transacted via a reader that is part of a computing sys-
tem. Smart card-enhanced systems are in use today through-
out several key applications, including healthcare, banking,
entertainment and transportation. To various degrees, all ap-
plications can benefit from the added features and security
that smart cards provide.Because smart cards are indeed tiny
computers, it’s difficult to predict the variety of applications
that will be possible with them in the future. It’s quite possible
that smart cards will follow the same trend of rapid increases
in processing power that computers have, following ”Moore’s
Law” and doubling in performance while halving in cost every
eighteen months. Smart cards have proven to be quite useful as
a transaction/authorization/identification medium in European
countries. As their capabilities grow, they could become the
ultimate thin client, eventually replacing all of the things we
carry around in our wallets, including credit cards, licenses,
cash, and even family photographs. (The photographs could
be viewed and/or exchanged by capable terminals or personal
computers.) By containing various identification certificates,
smart cards could be used to voluntarily identify attributes
of ourselves no matter where we are or to which computer
network we are attached.

RSA was widely used by the manufacturers of the micro-
controllers of smart cards. However, the computational power
of smart cards is very limited and the on-card implementations
are much slower than that on desktops. This paved a way to
for high-end smart card controllers to have special hardware,
called a crypto-coprocessor [1]. The crypto-coprocessor is a
specialized circuitry that is able to perform fast modular expo-
nentiation which inturn accelerates encryption and decryption
of public key cryptographic algorithms that use the computing
intensive modular exponentiation, like RSA.RSA key genera-
tion depends upon the efficient generation of prime numbers
quick and correct. This paper describes some efficient prime
generation algorithms and prime number testing algorithm that
are relatively fast.

The rest of this paper is organized as follows. Section
II gives a brief introduction to RSA cryptosystem - RSA
algorithm and RSA key generation. Section III highlights the
prime number generation. This section also outlines various
primality and compositeness tests. Prime generation algo-
rithms are listed out in Section IV. Efficient prime number
generation algorithms are described in this section. Section V
talks about a new method of generating RSA keys - On-board
key generation. An algorithm to describe the working of this
key generation is mentioned. This paper is concluded with the
acknowledgements and a conclusion finally.

II. RSA CRYPTOSYSTEM

RSA, named after its inventors Rivest, Shamir and Adleman,
is the most widely deployed public-key cryptosystem. It is
used for both public key encryption and digital signatures. The
security of RSA relies on the integer factorization of integers.

A. RSA Algorithm

Two large primesp andq are chosen by the each individual
user and the productN = pq is published [2] . Next, each
user chooses a public exponente that is relatively prime to
(p − 1) and (q − 1). Finally, each user computes the secret
exponentd according to

ed ≡ (mod(lcm(p− 1, q − 1))

The public parameters are (N, e) while the secret parameters
are (p, q, d). To send a messageM to Bob, Alice locates
Bob’s name in the directory and obtains his public key (e,N )
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and computes the cipher textC = Me(modN). Next, to
recover the plain textM , Bob uses his private exponent
and the modulus , and computesM = Ce(modN). RSA
algorithm provides a procedure for signing a digital document,
and verifying whether the signature is indeed authentic. A
digital signature cannot be a constant; it is a function of the
document for which it was produced. Suppose Alice wants to
sign a message, and Bob would like to obtain a proof that this
message is indeed signed by Alice. Alice takes the message
M , uses her secret key and computesS = Md(modN).
Next, she sendsM and S to Bob. Then Bob can verify that
S corresponds to Alice’s signature on the messageM by
checking whetherSe(modN) ≡ M where e is the public
exponent of Alice. Otherwise, either the original messageM
or the signatureS is modified, thus, the signature is not valid.

B. RSA Key Generation

As mentioned in the above section, RSA keys is a pair of
matching public/private keys.RSA uses a key for encryption
that is different from the decryption key. The key generation
requires two primesp andq so that
(i)(p− 1) and (q− 1) are co-prime to public componente and
(ii)N = pq is exactly anl bit integer, wherel is the bit length
of N .
The drawback in this approach is the running time which is the
most expensive operation in generating these keys. Another
solution consists in pre-computing values forp and q for
various pairs (e, l) and to store those values in a non-volatile
memory of crypto-coprocessor. Non-volatile memory is the
drawback here as it is more expensive.Using very efficient
algorithms, 1024 bit modulusN along withd can be generated
in few seconds on current smart cards.

III. PRIME NUMBER GENERATION

The generation of prime numbers underlies the use of the
most public-key schemes, essentially as a major primitive
needed for the creation of key pairs or as a computation
stage appearing during various cryptographic setups. Despite
decades of intense mathematical studies on primality testing
and an observed progressive intensification of cryptographic
usages, prime number generation algorithms remain scarcely
investigated. Common generators typically requireO(n4) or
O(n4/logn) bit operations wheren is the bit-length of the ex-
pected prime number [3]. Thus, there is a need for algorithms
that substantially reduce the value of the hidden constants,
therefore providing much more efficient prime generation
algorithms. It is also necessary to optimize the peformance of
the algorithm used for finding large primes in order to optimize
the performance of the algorithm for generating the RSA
key pair [3]. For RSA, it is very important to choose prime
numbersp andq forming the modulusN = pq randomly and
as large as possible. RSA based on the difficulty to factorize
the modulusn also means that someone will not be able to
infer the primesp andq by another way than the factorization.

A. Primality and Compositeness Tests

Primality tests declare whether a number is prime with
probability with 1. Sieve of Eratosthenes and Modular Search

Method fall in this category. Compositeness test declares
whether a number is composite with a probability 1 or prime
with probability ¡ 1. Fermat test, Solovay-Strassen test and
Miller-Rabin test fall under this category. Sieve of Eratos-
thenes was the first known means to test for primality and
to factorize numbers. It simply verifies the divisibility of the
numbern to test by all the primes starting from 2 to

√
n.

It is practically unthinkable to use this kind of algorithm
for generating primes as large as the ones used in RSA key
generation. Modular Search Method has excellent execution
time when using an arithmatic processo but the memory space
needed to store the numbers appears dissuasive, in particular
on smart cards where memory is subjected to strong size
constraint.

Compositeness test also called probabilistic primality tests
seems to be much faster than primality tests. A number
is a prime number with a high probability if it passes a
probabilistic primality certain number of times.In the next sec-
tion, we will see many different prime generation algorithms.
To improve the speed of generating large prime numbers
it is possible to use some properties of numbers to build
probabilistic tests such that all prime numbers pass the tests
and the other ones pass with a probabilityx.

B. Fermat Test

The (little) fermat theorem says thatan−1 ≡ 1modn ,for
every primen and base a relatively prime withn.Hence the
algorithm for the test goes like this

1: for i = 1 to t
2: Choose randomlya with 2 ≤ a ≤ n− 2
3: r = an−1 mod n
4: if r 6= 1 return composite
5: endfor
6: returnn prime

There exist composite numbersn always passing Fermat’s
pseudo-primality test called Carmichael Numbers [4].

C. Solovay-Strassen Test

The test is a further improvement of Fermat’s test.

a(n−1)/2 ≡ (a/n)modn

where (a/n) is Jacobi Symbol. The probability for a composite
number to pass this test is less than1/2t if t is the number
of randomly chosen basea [4].

D. Miller-Rabin Test

Miller-Rabin test is further more simple and easy to imple-
ment test than the previous ones. This is a primality test that
provides an efficient probabilistic algorithm for determining
if a given number is prime. It is based on the properties
of strong pseudoprimes. The algorithm proceeds as follows.
Given an odd integern, let n = 2rs + 1 with s odd. Then
choose a random integera with 1 ≤ a ≤ n − 1. If as ≡ 1
or a2js ≡ −1(modn) for some0 ≤ j ≤ r − 1, thenn passes
the test. A prime will pass the test for alla. The test is very
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fast and requires no more than (1+o(1) log n) multiplications
(mod n), wherelog is the logarithm base 2. Unfortunately, a
number which passes the test is not necessarily prime. Monier
and Rabin have shown that a composite number passes the
test for at most 1/4 of the possible basesa. If N multiple
independent tests are performed on a composite number, then
the probability that it passes each test is1/4N or less [4]. The
algorithm (n odd) is shown below.

1: find t andq such thatn = 2tq + 1
2: for i = 1tot
3: choose randomlya with 2 ≤ a ≤ n− 2
4: x = aqmodn
5: if (x 6= 1)
6: i=1
7: while (x 6= n− 1) do
8: if(i = t) return composite
9: x = x2 mod n
10: if(x = 1) return composite
11: i++
12: endwhile
13: endif
14: endfor
15: returnn pseudo-prime

E. Primality testing with Elliptic Curves

Let n be a suspected prime. If it is really a prime, then
|E(a, b)/n| lies in the interval (n + 1 − 2

√
n, n + 1 +

2
√

n).Furthermore, it is known that ifn is prime,then there
are always many elements of high order. If we can factor
|E(a, b)/n|, say |E(a, b)/n| = qa1

1 x...xqar
r , then we choose

a point P = (X0, Y0,Z0) at random and find its order. The
order must be divisor of|E(a, b)/n| and hence we can start by
verifying P#(|E(a, b)/n|/qi) for eachi. If thenZ coordinate
is relatively prime ton for each i and if n divides theZ
coordinate ofP#|E(a, b)/n|, then the order ofP in E(a, b)/p
is |E(a, b)/n| ≥ n+1−2

√
n for any primep dividing n which

implies thatn is prime. There is still hope even if one or more
of theZ coordintes is divisible byn. For each suchi, we find
the smallest positive integerbi, such that theZ coordinate of

P#
( |E(a, b)/n|

qbi
i

)

is relatively prime ton.

IV. PRIME GENERATION ALGORITHMS

1) Generating RSA Primes:This is a simple algorithmic
outline to generate RSA primes. 1. Pick ak bit odd m
uniformly at random from [m/2, m] 2. Apply test division on
m by all primes less than a certain small prime 3. Ifm passes
trial division test, then apply the (strong) pseudoprimality test
for r different bases 2, 3, 5, 7... 4. Ifm passes allr (strong)
pseudoprimality tests,
thenm is a prime number with high probability 5. Ifm fails,
takem := m + 2gotoStep2

2) Naive prime finding algorithm:The naive prime gener-
ation algorithm is sketched in the following table. Neglecting
calls to the random number generator, the expected number os
trials here is asymptotically equal to (ln 2n/2). 89 trials are
required to generate a 256 prime number. A naive approach
to find an n bit prime number is to randomly choose a b bit
odd number and call a compositeness test functionf using
the odd number as input. If the functionf returns the result
that the number is not a prime, another random number is
chosen and the procedure of testing it with a function is
repeated until a prime number is found, which would the prime
used for key generation. Hence, the implementation of the
primality test functionf must be optimized and the numbers
of tests (number of calls tof ) should be minimum in order
to optimize the performance of the prime finding algorithm
[3].Table 1 below describes the algorithm clearly. TheT (q)
functioin mentioned in the algorithm is nothing but the test of
primality.

Table:1 Naive Prime Finding Algorithm

1. pick a randomn− bit odd numberq
2. if T (q) = false then goto 1
3. outputq

3) Sieve of Eratosethenes:The sieve of eratosethenes was
the first known means to test for primality and to factorize
numbers. It verifies the divisibility of the numbern to test
by all primes starting from 2 to

√
n. It is very fast with the

first small primes but its computation time essentially grows
linearly with n. Sieve is always used to rapidly eliminate the
randomly chosen prime candidates having very small factors.
The functionQ(x) wherePx is the set of all primes≤ x may
be defined asQ(x) = Πp∈Px(1−1/p) [5]. For an larger than
x, this function may be interpreted as the probability forn to
be relatively prime with all primes inPx. Practically, a sieve
can be implemented by evaluating the GCD of the product
all the elements ofPx with the numbern to test.Table 2 lists
out the algorithm for this test. The functionS(k) is the set of
prime numbers.

Table:2 Sieve of Eratosethenes

1. Let pi be thei− th smallest
odd prime (p1=3, p2=5,...)
2. Let S(k) be a set of prime small prime such that
S(k) = (pi|pi ≤ k, i ∈ N), wherek can be
any positive integer.
3. For a given numberq, divide q by all
the elements inS(k)
4. If q is not divisible by all the elements in
S(k), q is said to survive the sieve.
Otherwiseq is said to fail the sieve
i.e q is a composite number.

4) Prime finding algorithm using trial division:One of the
most used sieve methods is the trial division method. If we
are given an integer less than a million, we can find its prime
factors fairly quickly just by using the fact that if it is not
a prime, then it must have a factor less than its square root.
Thus, take a list of all primes and try dividing them into the
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number to be factored. If none of them divide evenly, then the
original number was prime. Each time we find a prime divisor,
we divide it out. Once the unfactored portion that remains is
less than the square of the last prime tested, it can be known
that the unfactored portion has to be prime [5]. The algorithm
is described in the Table.3.

Table:3 Prime finding algorithm using trial division

1. Choose a setS(k). Pick an− bit odd
random numberq and letq(0)=q, i=0
2. Let wi

(j)=q(i) mod pj .
If wi

(j) = 0, for any j,
1 ≤ j ≤ k, goto 4
3. If T (q(i))= TRUE, outputqi and halt.
4. qi+1=qi+2, i := i + 1, goto 2

5) Prime finding algorithm using table look-up:The mod-
ular reductions are very expensive. Hence, it is desirable to
keep the number of modular reduction operations on the sieve
procedure to minimum. The modular reduction in trial division
algorithm is shown in Table 3. Although modular reduction
can be used to computewi

j , there is an efficient way to improve
it. If qi+1=qi+2 andwi

j=qi mod p, thenwi+1
j = wi

j+ 2 modp.
Finally, one can calculatewi+1

j from wi
j . In addition, if pj is

assumed to be 8-bits long, so iswi
j . So the computation of

wi+1
j only uses two 8-bit operands, resulting in a performance

much faster than modular reduction operations. The algorithm
is described in Table 4 [5].

Table:4 Prime finding algorithm using table look-up

1. Choose a setS(k). Pick an− bit odd random numberq
and letq(0)=q, i=0
2. Computew0

(j)=q(0) mod pj , 1 ≤ j ≤ k

3. If wi
(j)=0, for anyj, 1 ≤ j ≤ k, goto 5

4. If T (q(i))=TRUE, outputqi and halt
5. wi+1

(j) = w(i) + 2modpj , 1 ≤ j ≤ k

6. q(i+1)=q(i)+2, i=i+1, goto 3

The algorithm requires a table [w1, w2, ...] to keep all the
residueswi

j of the previous iteration. Hence, this algorithm is
referred to as table look-up algorithm.

6) Prime finding algorithm using bit array:Let us consider
the intervalofl test candidates, sayq(0), q(1), ..., q(i−1). A bit
arrayA is defined as [a0a1...ai−1] whereai is the i− th bit,
initially set to 0 withai representing the numberq(i).For each
prime p from the setS(k), we find a starting pointg(p) =
min(i|ql) is divisible by p, i ∈ N . If g(p) is less thanl, set
ai(p) to 1and then everyp− th bit of A is set to 1 since the
values ofa that are represented by these bits would also be
divisible byp. After this sieve,ai is zero if and only ifq(i) is
not divisible by any of the numbers inS(k).The sieve is then
concluded and the prime finding algorithm must only scan the
bit array A and try the primality testT for eachq(i) such
that ai is zero. This algorithm is called bit array algorithm.
The bit array algorithm will find a probable prime if ther is
one in the chosen interval.In the case that there is no probable
prime on the chosen interval, once can either randomly choose

another oddq and letq(0) = q(i−1) + 2. Table 5 describes the
algorithm [5].

Table:5 Prime finding algorithm using bit array

1. Setai = 0, for 0 ≤ i ≤ l − 1
2. Pick an− bit odd random numberq and letq(0)=q, i=0
3. For eachpj ∈ S(k), do

3.1 Computew0
j =q(0) mod pj

3.2 Computeg(pj)
3.3 Setag(pj)+m = 1, 0 ≤ m ≤ [(l − g(pj))/pj ]

4. for i:=0 to l − 1, do
4.1 If (ai=0) andT (q(i))= true, outputq(i) and halt.
4.2 q(i+1)=q(i)+2
4.3 q(0)=q(i), i=0, goto 3

V. ONBOARD GENERATION

Onboard key generation is preferable as the keys are not
imposed by the card manufacturer. This is a new method
suggested by FJ[1] for the generation of RSA keys. This
algorithm is divided into two phases. The first phase is
performed offline before the values of(l, e) are even known.
The second phase is performed online by the cryptographic
device once(l, e) are known. This method is supposed to
be very fast when compared any other method of RSA key
generation [6].

Table:6 Onboard RSA prime generation algorithm
Input: parametersl0, e anda (of large order) inZ∗π
Output: a primeqin

[
[2l0−1/2], 2l0 − 1

]

1. Computev = d [2l0−1/2]
π e andw = b 2l0

π c
2. randomly choosej ∈ R v, ..., w − 1 and setl ← jπ
3. randomly choosek ∈ R Z∗π
4. Setq ← k + l
5. If (q is not prime) or(gcd(e, q − 1) 6= 1) then

5.1 Setkak(modπ)
5.2 Goto step 4

6. Outputq

The prime produced by this algorithm has the form of
q = af−1k(0) mod π + jπ where k(0) denotes the initial
value of k and f is the number of failures of the test in
Step 5 [7].Memory requirements are reduced radically ifl0
bit prime q can be stored as a pair(i, f) where i is a
unique indexed identifier (i is used as the input of a pseudo
random number generator for constructingv, w, j, k(0)).This
phase is performed offline. Then the online stage consists in
reconstructing primes from pairs (i, f ). Moreover, in addition
to be a fast, this method allows the online generation of RSA
modulii N = pq of arbitrary length from a very small set of
values computed at the offline phase.Furthermore, parameters
can be chosen so that keys are guarenteed to work for the
usual public exponente which is usually let at the discretion
of the end user [7].
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VII. C ONCLUSION

A basis for understanding the key generation on smart cards
is presented in this paper. Time constraint in generating RSA
keys on smart cards is clearly pointed and algorithms that can
optimize the amount of time required to generate the keys
on smart cards are highlighted. Most of these algorithms are
implemented with varying results. There are several factors
that must be taken into account when designing cryptographic
algorithms for smart cards. There are several other algorithms
that can efficiently generate RSA key pairs but they couldn’t
overcome the specified constraint on the smart cards. At
present, a cheaper but effective solution may be to have an
on-board key generation. So, sets of keys will be generated
only if they will be used. Furthermore, they is more memory
available and this method is more secure as private keys are
only owned by the end user. Recent study shows that on-board
generation takes few seconds on an average. Larger key sizes
present new challenges since smart card crypto coprocessor
have fixed register sizes that will not be able to accommodate
large numbers. Elliptic Curve Cryptography(ECC) can provide
the same level of security using smaller RSA key lengths.
A future work would be the designing of key generation
algorithms using the Elliptic Curve Cryptography.

REFERENCES

[1] J. J. Quisquater and B. Schneier,Smart Card Crypto-Coprocessors
for Public-Key Cryptography, vol. 1820 of Lecture Notes in Computer
Science, Springer Verlag, 2000.
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