
1

SOBER-t-16 and SOBER-t-32
P. Topark-Ngarm, P. Kanivichaporn

Abstract—

SOBER-t-16 and SOBER-t-32 are discussed in this paper.
The t-class ciphers are based on the same principles as the
original SOBER family: SOBER [1], SOBER-II [2], S16 and
S32 [3], utilizing the structure SOBER-II and S16 are based.
The t-class ciphers [4] [5] [6] are software stream ciphers
designed for software implementation. Changes between the
t-class and the original SOBER family are centered around
constructing a stronger non-linear filter and more secure key
loading.

I. Introduction

SOBER-t16 and SOBER-t-32 are synchronous stream ci-
phers designed for a secret key that is up to 128 bits in and
256 bits. The cipher outputs the key stream in 16-bit and
32 bits blocks.The t-class contains three ciphers based on
8-bit, 16-bit and 32-bit operations. SOBER-t32 is one of
these ciphers.

The SOBER ciphers were primarily designed for use
within mobile telephony. In an application such as mobile
telephony, any loss of synchronization with such a stream
cipher is disastrous. To counter the loss of synchronization,
information is sent in small portions: frames. One possible
solution to avoid loss of stream cipher synchronization is
to encrypt each frame using a different secret key. An al-
ternative solution (used, for example, in the GSM system)
is to use a secret key for multiple frames. However, each
encrypted frame is implicitly numbered with a value called
a frame key or hook. SOBER-t16 and SOBER-t-32 can be
employed with or without a frame key.

The t-class stream ciphers have four components: key
loading, an LFSR, a nonlinear filter (NLF) and stuttering,
as shown in Figure 1. The key loading sets the 17 words
in the register of the LFSR to an initial state derived from
the key. In some cases a re-synchronization key or frame
key is used during key loading. The LFSR uses a linear
feedback function to construct a stream of words from the
initial state; this stream of words is the LFSR stream (sn).
The process of producing a new word in the LFSR stream
is called a cycle of the LFSR. The purpose of the NLF is to
disguise the linearity in the LFSR stream. After every cycle
of the LFSR, the NLF combines words from the register in
a non-linear function; the outputs form the NLF stream
(vn). The stuttering uses occasional NLF stream words to
select NLF stream words to be used in the key stream (zj)
[1].

The t-class cipher differs from the original SOBER family
in the following areas:
• t32 now uses the same structure as the rest of the t-class,
while S32 had a different structure to SOBER-II and S16.
• The NLF has been significantly strengthened with the
use of a nonlinear Sbox and the inclusions of a key-
dependent constant as an additional variable.

• The key loading has changed in two ways.
• The frame is now loaded as if it were a 4-octet key.
• The key loading has been strengthened to eliminate alge-
braic relationships that existed between words of the initial
state of the LFSR in SOBER-II.

���
������	

������
���

���� ���

�����
��������

����
��	����

��������� �����

�������	

��
�
�����

���
�����

�������
����

���
�����

�� �

�� �

�� �

�

�

Fig. 1. The components of the t-class SOBER stream ciphers.

II. The Linear Feedback Shift Register

A linear feedback shift register (LFSR) is typically based
on a recurrence relation over the Galois Field of order 2
(GF (2)). The output sequence (of bits) is defined by:

sn+k = ck−1sn+k−1 +ck−2sn+k−2 + ...+c1sn+1 +c0sn (1)

where sn is the n-th output of the sequence, the constant
coefficients ci, 0 ≤ i ≤ k − 1, are elements of GF (2), that
is, single bits, and k is called the order of the recurrence
relation.

The LFSR is typically represented by the polynomial:

p1(x) = xk + ck−1x
k−1 + ck−2x

k−2 + ... + c1x + c0 (2)

where p1(x) indicates that multiplication and addition are
over GF (2) . The operations involved, namely shifting and
bit extraction, are efficient in hardware but inefficient in
software, especially if the length of the shift register exceeds
the length of the registers of the processor in question. In
addition, only one bit of output is generated for each set
of operations, which again is inefficient use of the general
purpose CPU.

2.1 LFSR over GF (2w)
LFSRs can operate over any finite field, and can be made

more efficient in software by utilizing a finite field more

2

suited to the processor. Particularly good choices for such
a field are the Galois Field with elements (GF(2w)), where
w is related to the size of items in the underlying processor,
usually bytes or 16- or 32-bit words. The elements of this
field and the coefficients of the recurrence relation occupy
exactly one unit of storage and can be efficiently manip-
ulated in software. In the meantime, the order k of the
recurrence relation that encodes the same amount of state
is reduced by a factor of w.

The field GF (2w) can be represented (the standard rep-
resentation) as the modulo 2 coefficients of all polynomials
with degree less than w. The choice of an irreducible de-
gree w polynomial alters the way elements of the group are
mapped into encoded words on the computer, but does not
otherwise affect the actual group operations. The origi-
nal SOBER family and the SOBER t-class ciphers use the
irreducible polynomials shown in Table I.

w Irreducible Polynomial used in tw Hexadecimal

8 x8 + x6 + x3 + x2 + 1 0x14D

16 x16 + x14 + x12 + x7 + x6 + x4 + x2 + x + 1 0x150D7

32 x32 + (x24 + x16 + x8 + 1)(x6 + x5 + x2 + 1) 0x165656565

TABLE I

The irreducible polynomials used in tw, w ∈ {8, 16, 32}

Now that there is a known representation for the ele-
ments of the underlying field which can be stored in a single
computer unit, the LFSR can be specified in terms of bytes
or words instead of bits, and successive output values will
also be those units rather than bits. The feedback func-
tion is still of the form of equation (2), however the values
sn and the coefficients ci are elements of GF (2w), rather
than bits. Cycling the LFSR requires a number of constant
multiplication operations followed by XOR of these terms.
Multiplication with any other constants i c is implemented
using pre-calculated tables stored in read-only memory.

The t-class ciphers use LFSRs of the form:

sn+17 = αsn+15 ⊕ sn+4 ⊕ βsn (3)

where ⊕ denotes addition over GF (2w) (equivalent to w-
bit XOR), multiplication is performed over GF (2w) , and
are non-zero. This is the same form as used in SOBER-II
and S16, indeed the feedback function for t16 is identical
to that used in SOBER-II (S16). The feedback functions
are shown in Table 2. The LFSR is represented by a poly-
nomial over GF (2w):

pw(x) = x17 ⊕ αx15 ⊕ x4 ⊕ β (4)

where the subscript w indicates that the addition and
multiplication is over GF (2w).

The LFSR over the field GF (2w) is mathematically
equivalent to w parallel shift registers over GF (2) of length
equivalent to the total state 13w, each with the same recur-
rence relation but different initial state. Let the polynomial
p1(x) represent the LFSR over GF (2) . The multiplication

w Feedback Function for tw
8 sn+17 = 0xCEsn+15 ⊕ sn+14⊕0x63sn

16 sn+17 = 0xE382sn+15 ⊕ sn+4⊕ 0x67C3sn

32 sn+17 = sn+15 ⊕ sn+4⊕ 0xC2DB2AA3sn

TABLE II

The feedback functions for the t-class, where ⊕ denotes

w-bit XOR and ⊗ denotes multiplication over GF(2w).

constants chosen minimize the number of coefficient not
equal to one, such that the following properties are satis-
fied.
• The LFSR has maximum length period. The pe-
riod has a maximum length of (213w−1) when p1(x) is
a primitive polynomial of degree 13w, that is, it divides
xd+1, for d = 213w-1, but not for any d that divides (213w-
1).
• Approximately half of the coefficients of p1(x)
are 1. This condition is ideal for maximum diffusion and
strength against cryptanalysis.

III. The Non-linear Filter

Much of the cryptographic security of the t-class SOBER
family resides in the nonlinear filter (NLF) used to defend
against attacks on the linear feedback or stuttering phase.
It is therefore important to make this function as strong
as possible without compromising the performance of the
cipher.

������
������	

����
��������

����������
������

�� �����
����
�

 !

"#$%&

Fig. 2. The feedback functions for the t-class, where ⊕ denotes w-bit
XOR and ⊗ denotes multiplication over GF (2w).

3

The NLF takes the values from certain positions in the
register as inputs; as in SOBER-II and S16, the t-class
ciphers use the register elements r0, r1, r6, r13, r16 as in-
puts. As the LFSR is cycled before the NLF is applied,
the NLF stream word vn depends on LFSR stream words
sn+1, sn+2, sn+7, sn+14, andsn+17. The t-class NLF also
uses a key-dependent constant word called Konst as an
input value. This value is derived immediately after the
secret session key is loaded, and remains the same even if
the frame number changes.

In designing the NLF we gave ourselves certain restric-
tions. The processors for which the t-class ciphers are de-
signed are likely to have restrictions on the amount of ROM
available. Thus these ciphers can afford to use a S-box in
the NLF, although it would be preferable for the S-box to
use only a small amount of memory; we restrict the S-box
to containing only 256 entries where each entry is a w-bit
word. The NLF should also be balanced (that is, every
output word occurs with equal probability). Furthermore,
we place the requirement if any five of the six inputs (in-
cluding Konst) are fixed then every value for the remaining
input corresponds to a unique output.

The NLF chosen for the t-class is of the form:

vn = ((fw(r0 + r16) + r1 + r6)⊕Konst) + r13 (5)

as shown in Figure 2, where addition is modulo 2w , and
the function fw changes for each value of w. In terms of
LFSR stream words,

vn = ((fw(sn+1 + sn+17) + sn+2 + sn+7)⊕Konst) + sn+14

(6)
The function fw serves three purposes. Firstly, it re-

moves the linearity in the least significant bit and adds
significantly non-linearity to the remaining bits. Secondly,
it ensures that the addition of r0 and r16 does not com-
mute with the addition of r1 and r6. Thirdly it ensures
that every bit of the output of the NLF depends on every
bit of r0 and r16.

XORing the value Konst into the NLF has two purposes.
Firstly, it increasing the complexity of any attack (exclud-
ing exhaustive key search) as there are now 216 possible
NLF functions. Secondly, the Konst is XORed (rather than
added) so as to lower the probability of the addition of r13
commuting with the addition of r1 and r6. There is still
a small probability that the operations will commute, but
this probability is low and relies on the value of Konst.
This issue requires further analysis.

3.1 The Function fw used in tw, w ∈ {16,32}
In t16 and t32, the fw function has three parts, as shown

in Fig. 3.
The input to the S-box should depend on every bit of

r0 and r16, so the eight most significant bits (MSBs) of
(r0 + r16) are extracted to be the input (reference) to the
256 entry S-box. We call this operation most significant
byte extraction, and denote the operation by MSBE.

The S-boxes for t16 and t32, denoted SB16 and SB32 re-
spectively, are a combination of the Skipjack S-box and an
S-box tailor-designed by the Information Security Research

Centre (ISRC) at the Queensland University of Technology.
The eight MSBs of the output of SB16 and SB32 are de-
fined by the Skipjack S-box. The remaining (w-8) least
significant bits (LSBs) of the output of 16 SB and 32 SB
are defined by the S-boxes constructed by the ISRC. These
S-boxes were constructed as (w-8) mutually uncorrelated,
balanced and highly non-linear single bit functions.

The output fw(x), w ∈ {16, 32} is determined as follows.
Following MSBE, the most significant byte of X becomes
the input to SBw . The most significant byte is then re-
moved from X, and this value is XORed with the w-bit
output of the S-box. Thus, the most significant byte of the
output of fw(x), w ∈ {16, 32} is the output of the Skipjack
S-box, while the least significant (w-8) bits are obtained
by XORing the (w-8) bits of the output of SBw with the
(w-8) least significant bits of the input. The function fw
is defined this way to ensure that it is a highly non-linear
permutation, while using only a single, small S-box. The
function 8 f can be considered of the same form, noting
that w-8 = 0.

����� �����

	
�� ���������� ���� ������� �
�

� ���� �� ��� ����

� ����

� ���� ������

���
� ���

�� ��� ����

��������
���
�

�� !" #$%
���
�

Fig. 3. The function fw, used in tw, w ∈ {16,32}

IV. Stuttering the Non-Linear Output

It is easily conceivable that the state of the LFSR could
be used to efficiently reconstruct the state, particularly by
a fast correlation attack. The task is made much more
difficult if some of the states are not represented in the
output, in a way that is difficult to predict (irregular dec-
imation). This is the role of the stuttering in the t-class
ciphers. While the stuttering formed the most ad-hoc part
of the design of SOBER and SOBER-II, the stuttering has
also been the source of least trouble in the security analyses
done. In updating the SOBER family to the t-class, various
other forms of decimation were considered. However, the
original stuttering still appears to offer the best increase in
security. Thus, the stuttering employed in the t-class is de-
rived from the stuttering used in SOBER and SOBER-II.
Stuttering is based on occasional words of nonlinear out-

4

put being used to determine the inclusion of other words
in the output stream. When the generator is started, the
first NLF output (NLF stream word) is taken to be used
as a stutter control word (SCW). Each SCW is broken into
pairs of bits called dibits, with the least significant dibit
being used first. The dibits provide the cipher with in-
structions regarding how many times to cycle the LFSR,
whether to output an NLF output, and how this value is
included in the key stream. When the instruction from all
the dibits have been performed, the LFSR is cycled and
the NLF output from the register forms the next SCW.

V. Key Loading

The t-class ciphers are designed (primarily) for applica-
tions in wireless telephony. In such applications, packets
may be lost due to noise, synchronisation between the Mo-
bile Station (cellphone) and the Base Station may be lost
due to signal reflection, or a particular call might be handed
off to a different base station as the phone zooms along a
freeway. Any loss of synchronisation with a stream cipher
is disastrous. One solution, used in the GSM system, is
to have each encrypted frame implicitly numbered with a
frame key, and the stream cipher re-keyed for each frame
with the secret session key and the frame key. The frame
key is public and consists of a 4-octet unsigned integer.
SOBER, SOBER-II and S16 were designed to support such
a two-tier keying structure; S32 was not. All t-class ciphers
have been designed to support the two-tiered keying struc-
ture in addition to the standard mode of operation. The
cipher is keyed and re-keyed using two operations:
• Include(X); adds the word X to 15 r modulo 2w.
• Diffuse(); cycles the register and XORs the output of the
NLF with 4 r.

A t-class cipher is initially keyed using a secret, t-byte
session key [0], , [1] K K t - K as follows:
1. The 17 words of state information are initialised to the
first 17 Fibonacci numbers. There is no particular signifi-
cance to these numbers being used, except for the ease of
generating them. The value of Konst is set to the all zero
word.
2. The cipher applies Loadkey(K[],t) which includes the
session key bytes and session key length into the register,
and diffuses the information throughout the register.
3. The LFSR is cycled and Konst is set to the value of the
NLF output.

If the cipher is going to be re-keyed or the variable S-box
constructed, then the 17 word state of the register, 0 16 ,
, r r K , (which we call the initial key state) can be saved
at this point for later use, and the session key discarded.
However, for shorter session keys, the session key could
be saved and this procedure repeated as necessary, trading
additional computation time for some extra memory.

If the cipher does not use the two-tiered keying structure,
then the cipher produces a key stream with the register
starting in the initial key state. That is, the initial key
state is used as the initial state. However, if the cipher
uses a frame key, the cipher first resets the register state
to the saved initial key state, and then loads the 4- byte

frame key frame[0],, frame[3] using Loadkey(frame[4]). The
state of the register following the re-keying is taken as the
initial state, and the cipher produces a key stream with the
register starting in this state.

VI. Attacks

In [7-11] there are a lot of attacks have been investigated:
Theoretical Attacks, Correlation Attacks, Distinguishing
Attacks, Inversion Attacks, Guess-and-Determine Attacks,
Extended Guess-and-Determine Attacks, etc.

Theoretical attacks
A necessary security requirement of a filter generator is

that the LFSR length n and the algebraic order k of the
non-linear filter function should be large enough so that is
much bigger than the expected key stream length. For a
very naive attack, let’s consider SOBER-t16 without irreg-
ular decimation. The least significant bit of the output of
the NLF can be written as boolean function with 35 binary
input variables of algebraic order at most 32. So each least
significant bit of the NLF is a known linear combination of
all possible products of up to 32 of the 35 input bits. There
are exactly

32∑

i=0

= 34359737737 (7)

of such products. With roughly twice of that many ob-
served key stream bytes (65 giga-bytes), we can solve a
linear equation system in that many variables, and we will
get get a time complexity of O(2101). With the solution of
these linear equations we get at most 35 bits of the length
17 linear feedback shift register over GF(216), i.e. 6 bits
of the least significant bit LFSR and the bits of two full
register cells of the LFSR over GF(216).

In order to get more bits we can proceed as follows. We
drop the first one of the 34359737737 least significant out-
put bits of the NLF, clock the LFSR once more, get the
next least significant output bit and solve the simultaneous
equations again. So, after only 11 additional clocks, and
by exploiting the linear feedback recurrence, we can restore
17 consecutive LFSR output words.

Of course, we can extend this idea to all remaining out-
put bit functions of the NLF. But due to the s-box and
the carry propagation of the modulo addition the number
of products increases dramatically. In order to avoid the
gigantic requirements of the theoretical attack described
above, we need a boolean function with n input bits and
an algebraic order of k, so that solving a binary system

k∑

i=0

(8)

linear equations is still feasible. For instance, the func-
tion is a linear approximation of the least significant bit
f1(x) of the f-function, which holds with probability p =
0.5313. Therefore we get a boolean approximation of the
least significant bit of the NLF with 22 input bits and with

5

algebraic order of 11.

11∑

i=0

= 2449867 (9)

With time complexity of O(263) and roughly 4 mega-
byte key stream we can solve these linear equations, which
hold only with a certain probability.

Correlation Attacks
The least significant output bit of a modulo addition is

not connected to any carry bit, so this property could be
a good starting point for an attack. If we can find a corre-
lation of output bits of the NLF with a linear combination
of least siginificat bit taps of the LFSR, we can launch a
correlation attack to the least significant bit LFSR. But un-
fortunately, the least significant bit input of the f-function,
is correlated only with probability 1/2 to the least signifi-
cant bit output of f, which is completely useless.

Distinguishing Attacks
The attack is successful if one can distinguish the gen-

erated pseudo-random sequences from truly random se-
quences. The NESSIE-Tools were applied to SOBER-t16
and SOBER-t32 with 128 bit key size. However, the results
didn’t indicated a deviation from random behavior.

Inversion Attacks
Inversion attacks are so named because they ”invert”

the operations of the NLF: rather than using the inputs to
determine the NLF output, an input is determined from
the NLF output and the remaining inputs. The attacks
were initially conceived as attacks on bit-wise LFSR-based
ciphers with an NLF. The NLF had to be a linear function
in the first or last input; for example, vt = NLF(t) = g(st,
, st+x-1) + st+x (mod 2). In this case, the L-words are
single bits, with st+x denoting the last input to the NLF.
Suppose that the values ut, , ut+x-1, are candidates for the
L-words/bits st, , st+x-1. If these candidates were correct
then this would imply that:

ut+x = vt + g(ut + ... + ut+x−1)(mod2) (10)

ut+x+1 = vt+1 + g(ut+1 + ... + ut+x)(mod2) (11)

ut+x+2 = vt + g(ut+2 + ... + ut+x+1)(mod2) (12)

and so-forth. We say that the candidates ut+x, ut+x+1
and so forth have been determined. In an inversion at-
tack, the attacker guesses the values for the candidates ut,
, ut+x-1, and ”inverts” the NLF to determine further can-
didates until a full candidate state t has been determined.
This state is then tested. Provided x is less than the regis-
ter length, such an approach can offer a significantly lower
complexity than an exhaustive state search.

The inversion attack can be easily extended to word-
oriented stream ciphers. The attacker guesses the values of
ut, , ut+x-1, (these values are words) and inverts the NLF
to determine ut+x, ut+x+1 and so forth. In the case of
SOBER-t16, the attacker would guess values for the candi-
dates u1, , u16 and Konst. Then the attacker determines
the candidate u17 from the N-word v1 by inverting the
NLF:

where ”+” denotes addition modulo 216 and ”-” denotes
subtraction modulo 216. The attacker now has a full can-
didate state 1. This state is then tested.

Unfortunately for the attacker, this attack requires
guessing 272 bits of information. There is no advantage
to performing such an attack on SOBER-t16: an exhaus-
tive key search has a considerably lower complexity. Hence,
SOBER-t16 is resistant to the inversion attack.

Guess-and-Determine Attacks
Guess-and-Determine (GD) attacks are based on the as-

sumption that the attacker knows part of a sequence of
NLF outputs, and the attacker knows how many times the
LFSR has been cycled between the NLF outputs. The stut-
tering destroys knowledge about the number of LFSR cy-
cles; to account for this an attacker must assume the value
of the dibits (two bit blocks) used to control the stutter-
ing. The resulting attack is called an assume-guess-and-
determine (AGD) attack.

Extended Guess-and-Determine Attacks
Extended guess-and-determine (EGD) attacks use the

same approach as GD attacks, however EGD attacks use
additional linear relationships between LFSR stream words
that result from the linear feedback function. While GD
attacks have been known since late 1998, EGD attacks have
only been noticed since August 1999, so less is known about
these attacks. To date, these are the EGD basis for the t-
class ciphers:

r1(x) = pw(x) = x17 + αx15 + x4 + β (13)

r2(x) = p2
w(x) = x34 + αx30 + x8 + β2 (14)

r3(x) = pw(x)(x2 + α)(x4 + β) (15)

r3 = x23+(α2+β)x19+αβx15+x10+x8+β2x2+αβ2 (16)

Every possible EGD attack, using this EGD basis, has
been tested. None of these EGD attacks has a complexity
less than that of the best known GD attacks which have a
complexity of 210w (when stuttering is ignored). This is
not concrete proof of the resistance to EGD attacks, as it
is still uncertain whether there are further linear relation-
ships that are unresolvable with respect to this basis. We
will continue to look for further linear relationships. We
estimate that we have checked approximately half of the
possible products of pw(x) that have degree less than or
equal to 34; all have thus far proven to be resolvable with
respect to the EGD basis above. We do not expect to find
products of degree greater than 34 that are useful in an
EGD attack.

VII. Conclusion

The t-class ciphers are conservatively designed stream
ciphers with a very small software footprint, designed pri-
marily for embedded applications in wireless telephony.
Software implementations of LFSRs over GF (2w) can be
extremely efficient, allowing well-tried design principles to
be brought to bear in software ciphers. The t-class im-
proves on the original SOBER family by offering a stronger
non-linear filter and a more secure key loading process.

6

References

[1] G. Rose, “A stream cipher based on linear feedback over GF (28),”
in Australian Conference on Information Security and Privacy,
C. Boyd, Ed. 1998, Springer-Verlag.

[2] G. Rose, “Sober: A stream cipher based on linear feedback over
GF (28),” 1998.

[3] G. Rose, “S16 & s32: A fast stream cipher based on linear feed-
back over gf(232),” 1998.

[4] P. Hawkes G. Rose, “The t-class of sober stream ciphers,” 1999.
[5] P. Hawkes G. Rose, “Primitive specification and supporting doc-

umentation for sober-t16 submission to nessie,” 2003.
[6] P. Hawkes G. Rose, “Primitive specification and supporting doc-

umentation for sober-t32 submission to nessie,” 2003.

