
Differential Fault Attacks on RSA Smartcards
Phuc Vo

School of Electrical Engineering and Computer Science
Oregon State University
voph@engr.orst.edu

Abstract— Smart cards is a security technology that is be-
coming more and more popular. As a result, they are targets
of criminals who wish to break their encryption in order to
abuse what they protect. One form of attacks that can be
used is the differential fault attack (DFA). This report will
cover what are DFA’s, how they can be carried out against
a smart card and solutions that can defend such an attack.

I. Introduction

Smart cards are a technology that provides higher reli-
ability, more memory, and better performance than con-
ventional magnetic strips [1]. As a result, smart cards are
becoming more popular in use. They can be used for iden-
tity authentication and payment services. Common appli-
cations of smart cards include credit cards, mobile phones’
SIM card, pay-TV access control and data storage that can
contain a person’s medical record or personal identity. Be-
cause smart cards holds such valuable informations that
can be used for economic gains, they are a popular target
for attacks. These attacks include invasive attacks like re-
verse engineering where smart cards are depackaged and
completely analyzed and non-invasive attacks like differen-
tial power attack, electromagnetic analysis, and differen-
tial fault attacks (DFA). This paper will discuss DFA in
particular and provide different countermeasures to these
attacks.

II. Differential Fault Attacks

Differential fault attacks disturbs the function of the
smart card through physical means in order for the smart
card to output faulty data. This faulty data can then be
used to reveal the secret key of the smart card. Two types
of DFA that can be used to break a smart card are glitching
and optical fault induction attacks.

A. Glitching

Glitching is an attack done long ago by hackers to break
pay-TV smart cards [2]. This method involves applying a
glitch (a rapid transient) to the smart card’s clock or power
source. The smart card’s processor can then be made to
execute a number of incorrect instructions by varying the
duration and precise timing of the glitch. This can cause
the secret key to be outputted and checks of passwords and
access rights to be skipped over. For example, the following
loop is commonly used to output the contents of a limited
range in memory to the serial port.

1 b = answer address
2 a = answer length

3 if (a == 0) goto 8
4 transmit(*b)
5 b = b + 1
6 a = a - 1
7 goto 3
8 ...

The aim of glitching attacks is to increment the program
counter as usual but modify the conditional branch in line
3 or the decrement of variable a in line 6. The glitching
attack can then be repeated such that the entire contents
of the memory is outputted.

B. Optical Fault Induction Attack

Another DFA is the optical fault induction attack that
was described in [3]. This attack uses a laser to change
the state of a memory cell. By exposing an intense light
source to CMOS logic, the semiconductor becomes ionized
and can cause a new value to be written. The experiment
carried out by Skorobogatov used a light from a magnified
photoflash lamp to successfully change a bit in a SRAM
chip. By manipulating the data in the smart card, faulty
data can be outputted. This faulty data can then be used
by the Chinese Remainder Theorem (CRT) to find the
smart card’s secret key.

C. Finding the Secret Key Using CRT

Using the CRT to find the secret key of a public key
crytosystem was first discussed in [4]. Devices using public
key cryptosystems to generate signature may be attacked
to inadvertedly reveal their secret keys. This can be done
if the following conditions are true: the message as signed
is known, a ceratin type of faulty behavior occurs during
signature generation and the device outpus the faulty sig-
nature.

RSA uses two primes: p and q and sets n = pq. RSA
signs a message with the private key, d, by computing

s := md mod n

However, computing this exponent consumes a large
amount of time and power. A more efficient method that
is currently implemented in smart cards is to first compute
the following equations:

sp := md
p (mod p)

sq := md
q (mod q)



Where dp := d (mod p − 1) and dq := d (mod q − 1).
The Chinese remainder theorem can then be used on these
two equations to find s from sp and sq.

If an error occurs while computing sp and the faulty
value s′p is outputted, then a faulty signature s’ will also
be outputted for the message m. The secret exponent q
can be computed by:

q = gcd(s′e − m (mod n), n).

As can be seen from the above equation, the secret ex-
ponent q can be found without knowing the private key
n.

III. Countermeasures to DFA

There are many ways to make smart cards more resistant
to DFA’s [5], [6]. This can be done by changing the hard-
ware of the smart card itself or the software ran on the
smart card. In general, smart cards should have mecha-
nisms that can prevent glitching attacks, detect errors dur-
ing runtime or check the results of the computation before
outputting the data.

A. Asynchronous and Self-Checking Logic

One method to make a smart card resistant to fault at-
tacks is to use asynchronous and self-checking logic [5]. By
removing the clock from smart cards and having it employ
self-timed circuits, clock glitching attacks are no longer pos-
sible. The self-checking property of m-of-n encoded circuits
can be use to defend against power glitching and fault in-
jection attacks. Using m-of-n encoded circuits provides
self-checking properties due to the fact that a codeword of
length n is only valid when it contains m 1’s. An exam-
ple of such a coding scheme is the dual-rail encoding (See
Table-1).

Table 1: Dual Rail Encoding
A0 A1 meaning
0 0 clear
0 1 logic 0
1 0 logic 1
1 1 alarm

By detecting whether a codeword has an incorrect num-
ber of 1’s one of two behaviors can occur. In the case of a
reduction in the number of 1’s, the completion of the pro-
gram will not be allowed and the circuit will be stalled. If
there is an increase in the number of 1’s, an error will be
detected and an alarm signal can be propagated through-
out the circuit causing a system-wide deadlock. This cod-
ing scheme will also allow an alarm state to be activated
by OR-ing an alarm signal from tamper sensors with the
alarm signals from the dual-rail circuit (see Figure 1).

Figure 1: Alarm Insertion and Detection

B. Automatic Integration of Countermeasure

Another technique used on smart cards to resist DFA’s
is to make the smart card’s software more robust by re-
ducing the weakness of the software to a few and known
checkpoints. This can be done through a preprocessor that
automatically integrates an attack detection system into
the source code of the smart card’s software [6]. This de-
tection system maintains a history of a subset of successive
program points, called flags, that have been passed from
the beginning. The detection system will check the con-
sistency of this history regarding the control flow of the
program at certain checkpoints determined by the devel-
oper. At each checkpoint, the history is checked against
the control flow of the program and the detection system
determines which controls must be enforced. Depending
of the state of the smart card, these controls can accept
or reject executions depending on conditions defined by
the developer. This is an important feature for critical
operations, like instance file creation, that are allowed or
forbidden depending on the smart card’s state, i.e. person-
alization, post-issuance, etc.

The preprocessor creates the detection system based on
the location and data of directives included into the source
code by the developer. The four types of directives are
starting points, flags, check points and race declaration.
Starting points specifies where in the program must the de-
tection system start recording the history. Locations in the
code that need to be considered by the history are indicated
by the flag directives. The checkpoint directives designates
where in the code must the checkpoints be enforced. The
race declaration, along with a dynamic condition, deter-
mines whether or not a race, a family of executions, must
be accepted or not. The developers specifies in the flag
directives the family of accepted executions. During com-
piling, the preprocessor will replace a starting point with a
piece of code that resets the data structure used by the de-
tection system to store the execution history. The flag and
checkpoint directives will be replaced by a piece of code
that updates this data structure and a piece of code that
enforces the control repsectively. Coding that activates or
deactivates a race in question replaces the race declara-
tions. All of these pieces of code then form the detection
system in the software.



IV. Secure RSA Algorithms

Another way to make smart cards that implements RSA
more robust is to make the algorithms used to calculate
RSA signatures more secure against DFA’s [7], [8], [9]. This
scheme seeks to check if the RSA signature faulty before
outputting the signature and prevent the RSA secret fac-
tors from being leaked out.

A. Shamir’s Algorithm

One of the first RSA algorithm proposed to be more scure
against DFA’s was introduced by Shamir [7]. Let n = pq
be the RSA modulus and (e,d) be verification, signature
exponent, respectively. Also, let the Chinese remaindering
theorem be represented as CRT(). Shamir’s algorithms
runs as follows:

1: Choose a small, random r.
2: Compute: srp := md mod rp.
3: Compute: srq := md mod rq.
4: Check if srp := srq mod rq

then s = CRT(srp mod p,srq mod q. )
else: Output an error signal.

The probability an error will go undetected in this algo-
rithm is about 1

r . However, Shamir’s technique to comput-
ing the RSA signature is slow because the exponent, d, is
generally unknown and dpand dq are given instead. This
would require the algorithm to compute d in order to sign
a message. Another theorized weakness to this algorithm
is the step where srp is checked against srq. If this step
were to be skipped, because of a clock glitching attack for
example, it is possible the algorithm will output a faulty
signature.

B. Infective CRT-RSA

Infective CRT-RSA is another approach to computing
RSA signatures but eliminating the possiblity of an attack
on the self-checking step in Shamir’s algorithm. In Infec-
tive CRT-RSA, two integers, t1and t2 are used as the small
moduli like in Shamir’s approach. These integers must be
of sufficiently large bitlength and satisfies these conditions:

1. t1and t2 must be coprime
2. gcd(d,ϕ(t1) = 1 and gcd(d,ϕ(t2) = 1
3. t1and t2 are square-free
4. t1and t2 ≡ 3 mod 4
5. χX = pt1 · ((pt1)−1 mod qt2

Futhermore, the following pre-computations must be done:

Compute dp := d mod ϕ(p · t1)
Compute dq := d mod ϕ(q · t2)
Compute et1 , such that d · et1 := 1 mod ϕ(t1)
Compute et2 , such that d · et2 := 1 mod ϕ(t2)

The Infective CRT-RSA algorithm then runs as follows:

1: Compute: sp := mdp mod p · t1)
2: Compute: sq := mdq mod p · t2)
3: Compute: s := CRT(sp, sq) mod N · t1 · t2
4: Compute: c1 := (m − set1 + 1) mod t1

5: Compute: c2 := (m − set2 + 1) mod t2
6: Compute: sign := sc1·c2 mod N

This approach protects every single computation step
of the signature algorithm by using the two integers
t1 and t2 to compute spandsq. By combining s mod N ·
t1 · t2 through CRT, infective computations can be done to
calculate the signature. Because this method uses infective
computations, the final signature will be false modulo p
and q. As a result, single points of failures can be avoided.

C. Secure Modular Functions

A generalization and improvement of Shamir’s technique
was proposed in [9]. This approach saw that any modular
function, f, can be calculated in a similar way to Shamir’s
algorithm. That is, this realations was found:

f(x) mod p = [f(x) mod rp] mod p

This relation can be used to effectively check two half ex-
ponentiations seperately and check them for errors. This
relation can be used for RSA signatures by the following
steps:

1: Choose two random numbers: r1 and r2

2: Compute S11 := P (m)dp mod r1p
3: Compute S12 := P (m)dp mod r1

4: Compute S21 := P (m)dq mod r2q
5: Compute S22 := P (m)dq mod r2

6: Check if both S11 := S12 mod r1 or S21 := S22 mod r2

If they are equal, then S = CRT (S11 mod p, S21 mod q)
Else, output an error signal.

The function P is a padding function. The probability
an error passes through this method undetected is 1

r . By
checking two half exponentiations, the time it takes to
output the signature or an error signal is much less than
Shamir’s approach.

V. Conclusion

Because of their rising popularity, smart cards have be-
come a target of many different and ingenious attacks. One
of the most clever and less costly of these attack are the
differential fault attacks. These attacks include glitching
attacks on the clock or power supply of a smart and opti-
cal induction attacks on the logic device in the smart cards
processor or memory. The purpose of these attacks are to
disrupt the operation of the smart card and cause it to re-
veal its secret key. To defend against these attacks, there
are many hardware and software countermeasures that are
proposed and used. This includes using a self-timed and
asynchronous circuit, implementing an error detection sys-
tem in the software of the smart card and changing the
RSA algorithm on the smart card to make them more ro-
bust against DFA’s. It should be mentioned that the coun-
termeasure presented in this paper are not necessarily the
most secure techniques because their weaknesses are still
being investigated. However, they do serve as a basis on
which more robust smart cards can be built.



References

[1] C. Aumüller, P. Bier, W. Fischer, P. Hofreiter, and J.-P. Seifert,
“Fault attacks on RSA with CRT: Concrete results and practical
countermeasures,” .

[2] R. Anderson and M. Kuhn, “Tamper resistance - a cautionary
note,” in Proceedings of the Second Usenix Workshop on Elec-
tronic Commerce, 1996, pp. 1–11.

[3] S. Skorobogatov and R. Anderson, “Optical fault induction at-
tacks,” CHES 2002, LNCS 2523, pp. 212.

[4] M. Joye, A. K. Lenstra, and J. Quisquater, “Chinese remainder-
ing based cryptosystems in the presence of faults,” Journal of
Cryptology, vol. 12, no. 4, pp. 241–245, 1999.

[5] S. Moore, R. Anderson, P. Cunningham, R. Mullins, and G. Tay-
lor, “Improving smart card security using self-timed circuits,” in
Asynchronous Circuits and Systems, 2002, pp. 211–218, Eighth
International Symposium on Advanced Research in Asynchronous
Circuits and Systems, Computer Laboratory, University of Cam-
bridge.

[6] M. Akkar, L. Goubin, and O. Ly, “Automatic integration of
counter-measures against fault injection attacks,” Pre-print found
at http://www.labri.fr/Perso/ ly/index.htm, 2003.

[7] A. Shamir, “How to check modular exponentiation,” Presented at
the rump session of EUROCRYPT’97, 11-15th May 1997, Kon-
stanz, Germany.

[8] M. Otto J. Blőmer and J.P. Seifert, “A new CRT-RSA algorithm
secure against bellcore attacks,” in Proceedings of the 10th ACM
conference on Computer and Communications Security, 2003, pp.
311–320.

[9] P. Paillier M. Joye and S. Yen, “Secure evaluation of modular
functions,” in International Workshop on Cryptology and Net-
work Security, 2001, pp. 227–229.


