
ECE 679, ADVANCED CRYPTOGRAPHY, OREGON STATE UNIVERSITY, SPRING 2003 1

FPGA Implementation AES for CCM Mode
Encryption Using Xilinx Spartan-II

Khoa Vu, David Zier

Abstract— This paper discusses a possible FPGA implementa-
tion of the AES algorithm specifically for the use in CCM Mode
Encryption. CCM Mode encryption is a proposed standard to
be used and the security backbone behind the new IEEE Std.
802.11i. CCM currently spends most the computation power per-
forming the AES algorithm. This paper investigate the possibility
of creating an off-chip AES system for CCM so that the process
can be speed up. The implementation was done on Xilinx Spartan
IIE, running on 50MHz platform.

Index Terms— AES, CCM, CCMP, Cryptography, 802.11i,
Security, Wireless LAN.

I. I NTRODUCTION

A S 802.11i becoms a standard in the near future, it will
replace the current 802.11 WEP (wireless equivalent pro-

tection) security scheme. Counter mode encryption CBC-MAC
protocol (CCMP) will be the basis protocol to protect data
transfer across the wireless medium for the 802.11 wireless
LAN. CCMP is based on AES in counter mode and CBC-
MAC (CCM).

In CCM mode, the majority of the time of the protocol
is spent on computing the AES algorithm. AES is used to
generate the cipher text from the header of the 802.11 package
as well as the package payload. Therefore, it is an incentive
to have a hardware assisted ASIC or FPGA for computing
the AES cipher text. This will alleviate the computing power
from the main processor. One possible implementation of the
CCMP protocol is to have the main processor in charge of the
MAC layer and ASIC/FPGA device running simultaneously
preforming the AES encryption/decryption algorithm.

The goal of the ASIC/FPGA is to compute the AES
algorithm to generate the cipher text in the range of at least
11Mbps or higher. However, since the new 802.11a emergence,
it is desirable to have the ASIC/FPGA to run at 54 Mbps. This
paper will discuss the implementation of the AES algorithm
with Xilinx Spartan 2 200K gates FPGA. In addition, there is
some background on both AES and CCM.

II. A DVANCED ENCRYPTION STANDARD

The Advanced Encryption Standard (AES) is a symmetric
block cipher that is based upon the Rijndael algorithm. AES
can process data blocks of 128 bits, using cipher keys with
lengths of 128, 192, and 256 bits. A full detailed description
of the AES algorithm can be found at in the FIPS-197[1]
document.

This paper was written as a final project for ECE 679: Advanced Cryptog-
raphy in the Spring of 2003

A. Algorithm Specification

For the AES algorithm, the length of the input block, the
output block and the State Array is 128 bits. The state array
is the internal matrix upon which the data is manipulated and
consists of four rows of bytes, each containingNb bytes,
whereNb is the block length divided by 32. Figure 1 illustrates
the layout of the State Array.

State array
s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

Fig. 1. State Array

The length of the Cipher Key,K, is 128, 192, or 256 bits.
The number of rounds executed depend entirely on the length
of the Cipher Key. Thus ensuring full permutation of all key
bits on the state array. Table I illustrates this connection.

TABLE I

KEY-BLOCK-ROUND

Key Length Block Size Number of
Rounds

(Nk words) (Nb words) (Nr)
AES-128 4 4 10
AES-192 6 4 12
AES-256 8 4 14

For both its Cipher and Inverse Cipher, the AES algorithm
uses a round function composed of four different byte-oriented
transformations: 1) byte substitutions using a substitution table
(S-box), 2) shifting rows of the State array by different offsets,
3) mixing the data within each column of the State array, and
4) adding a Round Key to the State.

B. Cipher

The Cipher starts with the addition of the initial Round
Key. The State array is transformed by implementing a round
function 10, 12, or 14 times (depending on the key length),
with the final round differing slightly from the firstNr −
1 rounds. The round function is parameterized using a key
schedule that consists of a one-dimensional array of four-byte
words derived using the Key Expansion routine.

All rounds, except the last one, include the individual
transformations,SubBytes, ShiftRows, MixColumns, and Ad-
dRoundKey. The last round does not include the theMix-
Columns1 transformation.

1For more information about the individual round transformations, please
refer to FIPS-197[1].

2 ECE 679, ADVANCED CRYPTOGRAPHY, OREGON STATE UNIVERSITY, SPRING 2003

C. Inverse Cipher

The Cipher transformations can be inverted and then imple-
mented in reverse order to produce a straightforward Inverse
Cipher for the AES algorithm. The individual transformations
used in the Inverse Cipher areInvSubBytes, InvShiftRows,
InvMixColumns, andAddRoundKey.

D. Key Expansion

The AES algorithm takes the Cipher Key,K, and performs
a Key Expansion routine to generate a key schedule. The
Key Expansion generates a total ofNb(Nr + 1) words. The
algorithm requires an initial set ofNb words, and each of the
Nr rounds requiresNb words of key data. The resulting key
schedule consists of a linear array of 4-byte words, denoted
[wi], with i in the range0 ≤ i < Nb(Nr + 1).

The basic idea of the Key Expansion is to preform a
SubWordon each four-byte word and apply the S-box trans-
formation to each of the four bytes. The four byte word
is then rotated in such a way that the input[a0, a1, a2, a3]
becomes[a1, a2, a3, a0], thus performing a cyclic permutation.
To further expand the key, a round constant word array,
Rcon[i] is applied every four rounds. This word array contains
the values given by[xi−1, 00, 00, 00], with xi−1 being powers
of x in the field GF(28).

III. CTR M ODE AND CBC-MAC AUTHENTICATION

(CCM)

In 1999, IEEE developed a new standard to handle infor-
mation over wireless networks known as IEEE Std 802.11-
1999. This standard had the ability to handle wireless traffic
quite easily, but lacked the strict security standards required
by institutions and corporations.

The Specification for Enhanced Security over Wireless
Networks, IEEE 802.11i, requires a strong encryption stan-
dard, naturally, the use of AES is strongly desired. There-
fore, [WHF][2] proposed a combination of counter mode
encryption and CBC-MAC authentication. This method proves
to be viable for several reasons; there is no known patent
encumbrances, the modes have been used and study for a
long time and have well-understood cryptographic properties,
and they provide for good security and performance, whether
implemented in hardware or software.

A. Generic CCM

CCM is a generic authenticate-and-encrypt block cipher
mode. CCM is currently only defined for use with block
ciphers with a 128-bit block size, such as AES.

For the generic CCM mode there are two parameter choices
to be made. The first choice isM , the size of the authentication
field. The choice of the value forM involves a trade-off be-
tween message expansion and the probability that an attacker
can undetectably modify a message. Valid values are 4, 6, 8,
10, 12, 14, and 16 octets. The second choice isL, the size of
the length field. This values requires a trade-off between the
maximum message size and the size of the Nonce. Different
applications require different trade-offs, soL is a parameter.
Valid values are 2 to 8 octets (the valueL = 1 is reserved).

TABLE II

PARAMETERS OFCCM MODE

Name Description Field Size Encoding
M Number of octets in 3 bits (M − 2)/2

the authentication field
L Number of octets 3 bits L− 1

the length field

B. Inputs

The CCM mode requires the following inputs for authenti-
cation and encryption:

• An encryption keyK suitable for block cipher (128, 192,
or 256-bit key for AES).

• A nonceN of 15− L octets that shall be unique within
the scope of any encryption keyK. This means that
the set of nonce values used with any given key shall
not contain any duplicate values. Using the same nonce
for two different messages encrypted with the same key
destroys the security properties of the CCM mode.

• The messagem, consisting of a string ofl(m) octets
where0 ≤ l(m) < 28L. The length restriction ensures
that l(m) can be encoded in a field ofL octets.

• Additional authentication dataa, consisting of a string of
l(a) octets where0 ≤ l(a) < 264. This additional data
is authenticated but not encrypted, and is not included in
the output of this mode. It can be used to authenticate
plaintext headers, or contextual information that affects
the interpretation of the message.

C. Authentication

The first step in authenticating is to compute the authenti-
cation fieldT using CBC-MAC. We first define a sequence
of blocksB0, B1, . . . , Bn and then apply CBC-MAC to these
blocks. Figure 2 illustrates the format of the first blockB0.

Octet no: 0 1 . . . 15− L 16− L . . . 15
Contents: Flags NonceN l(m)

Fig. 2. Format of blockB0

The value l(m) is encoded in most-significant-byte first
order. Figure 3 illustrates the format of the Flags field. The
Rsrv bit is reserved for future expansion and should always
be set to zero. TheAdata bits is set to zero ifl(a) = 0, and
is set to one ifl(a) > 0. The M field encodes the valueM
as (M − 2)/2. The L field encodes the size of the length of
the field used to storel(m). The parameterL is encoded as
L− 1 sinceL = 1 is reserved.

Bit no: 7 6 5 4 3 2 1 0
Contents: Rsrv Adata M L

Fig. 3. Format of Flag field

The Adata bit in the flag field determines if the authenti-
cation field is required,l(a) > 0. If a field is required then
one or more blocks of authentication data are added. These
blocks containl(a) anda is encoded in a reversible manner.

VU AND ZIER: FPGA IMPLEMENTATION AES FOR CCM MODE ENCRYPTION USING XILINX SPARTAN-II 3

The string that encodesl(a) is first constructed based on the
following rules:
• 0 < l(a) < 216 − 28: The length field is encoded as two

octets which contain the valuel(a).
• 216−28 ≤ l(a) < 232: The length field is encoded as six

octets consisting of the octets 0xff, 0xfe, and four octets
encodingl(a).

• 232 ≤ l(a) < 264: The length field is encoded as ten
octets consisting of the octets 0xff, 0xff, and eight octets
encodingl(a).

The blocks encodinga are formed by concatenating this
string that encodesl(a) with a itself, and splitting the result
into 16-octet blocks, padding the last block with zeros if
necessary. These blocks are appended to the first blockB0.

The message blocks are then added after the additional
authentication blocks. The message blocks are formed by
splitting the messagem into 16-octet blocks and padding the
last block with zeros if necessary. If the message stringm is
empty, then no blocks are added in this step.

We finally get the resulting sequence of blocksB0, B1, . . .,
Bn and compute the CBC-MAC by:

X1 := E(K, B0) (1)

Xi+1 := E(K, Xi ⊕Bi) ∀i = 1, . . . , n (2)

T := first−M − bytes(Xn+1) (3)

whereE() is the block cipher encryption function andT is
the MAC value.

D. Encryption

To encrypt the message data, CCM uses CTR mode. This
is done by first defining the key stream blocks by

Si := E(K, Ai) ∀i = 0, 1, 2, (4)

Figure 4 illustrates the formatting of theAi field wherei is
encoded in most-significant-byte order.

Octect no: 0 1 . . . 15− L 16− L . . . 15
Contents: Flags NonceN Counteri

Fig. 4. Format ofAi

The Flags field is formatted as illustrated in Figure 5. The
Reservedbits are set to zero and Bits 3, 4, and 5 are set to 0
as well. This technique is used to ensure that allA blocks are
distinct from theB0 block. Bits 0, 1, and 2 containL, using
the same encoding asB0.

Bit no: 7 6 5 4 3 2 1 0
Contents: Rsrv Rsrv 0 L

Fig. 5. Format of Flag field

The message is then encrypted by XORing the octets of the
messagem with the firstL(m) octets of the concatenation of
S1, S2, Note thatS0 is not used to encrypt the message.
The authentication valueU is computed by encryptingT with
the key stream blockS0 and truncating it to the desired length.

U := T ⊕ first−M − bytes(S0) (5)

E. Output

The final resultc consists of the encrypted messagem,
followed by the encrypted authentication valueU .

F. Decryption

The following input information is required for the decryp-
tion of the message:

• The encryption keyK.
• The nonceN .
• The additional authentication dataa.
• The encrypted and authenticated messagec.

Decryption starts by recomputing the key stream to recover
the messagem and the MAC valueT . The message and
additional authentication data is then used to recompute the
CBC-MAC value and checkT . If the valueT is not correct,
the reciever shall not reveal any information except for the fact
that T is incorrect. In particular, the receiver shall not reveal
the decrypted message, the valueT , or any other information.

IV. AES IMPLEMENTATION ON A X ILINX SPARTAN IIE

Since CCM spends a lot of computational time on AES
decryption/encryption, we would like to free the main pro-
cessor by implementing the AES off chip on a separate
FPGA. We choose a Xilinx Spartan II for its 200K gates.
The implementation is partitioned into three modules: Input
Interface, Output Interface, and the AES block cipher engine2.

A. Input Interface

The Input Interface module is a parallel shift register of
sorts. It takes the 128-bit plaintext message,M , one byte or
8-bits at a time. The module will continue to load each byte
until the entire 128-bit plaintext message has been received.
Once the entire message has been received, then the Input
Interface module signals the AES engine to begin encryption.
This module also has the ability to encrypt partial messages,
meaning, messages that are not exactly 128-bits long.

B. Output Interface

The Output Interface module is very similar to the Input
Interface module. Once a ciphertext,C, is ready, the Output
Interface module is then triggered. It will then output the 128-
bit ciphertext message one byte at a time for 16 iterations.
Once the ciphertext message has been successfully outputted,
then the system will be ready for another plaintext message.

C. AES Cipher Engine

The AES Cipher Engine module performs the AES encryp-
tion algorithm as described in Section II. This module is made
up of three components; the Key Scheduling component, the
Round Hardware component, and the control component.

2Due to time constraints and chip size, the authors were only able to
implement the AES engine for encryption only. Future versions will contain
decryption as well so that the whole AES process is off chip

4 ECE 679, ADVANCED CRYPTOGRAPHY, OREGON STATE UNIVERSITY, SPRING 2003

1) The Round Hardware Component:is the basic data path
and circuitry the computes a single AES round encryption. It
contains the hardware for the ByteSub, ShiftRow, MixColumn,
and AddRoundKey transformations. The ByteSub transforma-
tion requires the use of an S-Box, where each S-Box has an
input of 8-bits or one byte. Since we are encrypting 128-bits
in parallel on every round, the ByteSub requires 16 S-Boxes
to perform the transformation. This is a huge restriction since
each S-Box is 128 bits and since we need 16 of them, then
we will need to find space for 2048 bits or 256 bytes just for
the S-Boxes.

The Round Hardware Component was designed to allow for
future scalability issues. It allows the designer the option to
cascade the Round Hardware Component to create a pipelined
architecture. This ability depends on the device’s platform
capabilities.

2) The Key Scheduling Component:performs the Round
Key generation. This round key is generated dynamically each
round based on the previous rounds key. It follows the same
rules and algorithm as described in Section II-D.

3) The Control Component:controls the number of rounds
of execution as well as the managing the Key Scheduling
component. For our implementation, we used the standard
128-bit key and 128-bit data block size. Therefore, the Control
Component allows for only 10 rounds of AES encryption. Due
to the limitation of the Spartan II, only one round can be fit
on the chip at a time.

The Control Component feeds the Key Generation the round
constant. This allows for the Control Component to keep track
of the round keys that are needed and generated.

D. Constraints

This project was implemented on Xilinx’s Webpack version
of the ISE development environment, therefore there were
many feature that were lacking. These features could have
enhanced the performance of the project. One example is that
the Webpack does not have the ”CoreGen” function that allows
you to generate memory elements that are very compact.
In addition, this project was based on Xilinx’s Spartan 2,
200K gates. It is not feasible to have a pipelining architecture
implemented on Spartan 2 chip. There are 16 duplicated S-
boxes for 16 bytes. Additionally there are 4 duplicated S-boxes
that are used in the key scheduling module for a total of 20
S-boxes per round. Beside the S-box, additional circuitry is
required for mix column operation, which involves 128-bits
XORing and Shifting operations. Needless to say, a chip with
a much larger capacity would be better suited for this task.

E. Future Improvements

If the AES algorithm was implemented on an ASIC or a
much larger FPGA, we could pipeline the round hardware
component to greatly improve the overall performance. One
possible scenario is to have ten pipeline stages for each round.
Each stage could share S-Boxes, thus requiring a maximum
of 16 S-Boxes for all ten rounds. The S-box data could be
available during the clock transition to low.

F. Implementation Results

Table III gives the final implementation results using the
Xilinx Webpack to layout the design. It describes the device
utilization of AES and the timing reports.

TABLE III

RESULTS OFAES IMPLEMENTATION ON AN FPGA

Device Utilization Summary
Selected Device 2s200pq208-5

Number of Slices 2035 out of 2352 86%
Number of Slice Flip Flops 787 out of 4704 16%

Number of 4 input LUTs 3921 out of 4704 8%
Number of bonded IOBs 24 out of 144 16%

Number of GCLKs 1 out of 4 25%
Timing Report

Speed Grade -5
Minimum Period 23.075ns

Maximum Frequency 43.337MHz
Minimum input arrival

time before clock 16.783ns
Maximum output required

time after clock 16.756ns
Maximum combinational

path delay No path found

V. OVERVIEW OF IMPLEMENTATION

Now that we have a hardware interface module for AES,
we need to discuss how this will interface with the rest of
the system. Network protocols, particularly IEEE Std. 802.11i,
are composed of several different layers. When a user wants
to send information over the network, the information is
separated into smaller, individual packets. These packets are
then sent down through the layers and additional information
is added to them to ensure proper communication, such as
source address and destination address. The packet is then
sent through the ethernet and arrives at the destination where
it travels up the layers and is reassembled for the receiver.

One of the layers that the packet must go through in 802.11i,
is the MAC layer. It is responsible for packing the packet and
ensuring proper security. The security scheme that is being
proposed is the CCM Mode Encryption as described in Section
III-A. CCM Mode Encryption relies heavily on software block
ciphers such as AES. This is where our implementation of
AES on an FPGA comes into play. It is explicitly designed to
interface directly with the MAC layer and perform all block
cipher operations requested by the CCM Mode Encryption.

By including the use of a hardware block cipher, the
processor can spend some of the computional time on other
computations. The ideal goal would be to have this AES
hardware implementation be embedded on a Wireless Network
Adapters for PCs and Laptops. Ultimately, this could relieve
enough time from the processor to enable faster communi-
cation rates and generally both speed up and secure wireless
communications.

VI. CONCLUSION

The AES implementation on the FPGA is a viable solution
for improving the speed and processing power of CCM Mode
Encryption. A much larger FPGA or ASIC would be preferred,
since both encryption and decryption could be implemented

VU AND ZIER: FPGA IMPLEMENTATION AES FOR CCM MODE ENCRYPTION USING XILINX SPARTAN-II 5

as well as some pipelining of processes. Although the design
was implemented and intended to be interfaced with a micro-
controller/microprocessor running the CCM Mode Encryption,
our sources and tools prevented us from performing any ‘real’
life experiments. The simulation results preformed quite well
and the authors are confident that the solution would work.

ACKNOWLEDGEMENTS

The authors would like to thank Dr. Çetin Koç and the
ECE 679 Advanced Cryptography course for allowing us the
opportunity to research this area of cryptography. The authors
would also like to thank Dr. Alexandre Tenca for the use of
the Spartan IIE board for the duration of this project.

REFERENCES

[1] Announcing the Advanced Encryption Standard AES. Federal Infroma-
tion Processing Standards FIPS, November 2001, FIPS Publication 197.

[2] D. Whiting, R. Housley, and N. Ferguson, “IEEE P802.11 wireless LANs:
AES encryption & authentication using CTR mode & CBC-MAC,” IEEE,
Tech. Rep. IEEE 802.11-02/001r2, May 2002.

[3] J. R. Walker, “IEEE P802.11 wireless LANs: Unsafe at any key size;
an analysis of the wep encapsulation,” IEEE, Tech. Rep. IEEE 802.11-
00/362, October 2000.

[4] P. A. Lambert, R. Housley, O. Letanche, and D. Stanley, “IEEE P802.11
wireless LANs: Alternate text for TGi 8.3.4,” IEEE, Tech. Rep. IEEE
802.11-03-118r0, November 2002.

