Increasing the Bitlength of a Crypto-Coprocessor

Wen-Chun Yang
School of Electrical Engineering and Computer Science
Oregon State University, Corvallis, OR 97331
E-mail: {yangwe}@ece.orst.edu

Abstract— the purpose of this paper is to present the
demonstrations for the algorithms proposed in [1]. The tech-
niques presented in [1] increase the virtual bit-length of the
crypto-coprocessors from both hardware and software point
of views. While demonstrating the methods in [1], the al-
gorithms and the comparisons would also be introduced in
the rest of this paper.

Key Words: Public-key cryptosystems, Arithmetical co-
processor, Hardware architecture, Modular multiplication,
Hardware/Software codesign.

I. INTRODUCTION

Due to the need for using public-key cryptosystems in
an efficient way, finding how to increase the bit-length of
the co-processors has become one of the top priorities for
the computer architects and the cryptographic engineers.
This has become an open solution for the society, and to
this day, no correct solutions have been published to the
world.

One of the reasons for increasing the bit-length of a
crypto-coprocessor is because of the large integer arith-
metic, which is essential for the public-key cryptography.
Many modular multiplication algorithms have been stud-
ied in order to speed up the arithmetic process [2] [3] [4]
[5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17].

However, the high popularity of using portable devices
has also become the other motivation for increasing the bit-
length due to the fact that the low-power hardware devices
do not provide sufficient bit-lengths.

A 2048-bit RSA can not be handled efficiently on a 1024-
bit device. Therefore, those two concerns have become
big issues for the industry. One of the solutions is using
the Chinese Reminder Theorem for the RSA signature [4].
In order to keep the RSA verification simple, the fourth
Fermat number is used as public exponent, which efficiently
reduces the 2048-bit modular multiplications to 1024-bit
modular multiplication [6] [7] [13].

In this paper, I will focus on the accuracy for the pro-
posed algorithms in [1]. The rest of the paper is organized
as follows. Section II explains the preliminaries. Section
ITT defines the comparison of the doubling algorithm for
the proposed algorithms in [1]. Section IV concludes this
paper.

II. PRELIMINERIES

Doubling Algorithm

A doubling algorithm is used when the data size is ex-
panded because it minimizes the amount of copying that
must be done.

The Instructions MultMod and MultModInitn
The following definition is the used for the usual modutlar
multiplication [1].

Definition 1.
For numbers A, B, and N, N > 0, the MultMod instruction
is defined as
R = MultMod(A, B, N)
with
R := (A * B)modN.
The following extension of the modular multiplication is

already the feathers of todays crypto-coprocessors [1].

Definition 2.
For a fixed integer n and numbers A, B, C and N, N > 0,
the MultModInitn instruction is defined as
R = MultModInitn(A, B,C, N)
with
R:= (A% B+ C x2™)modN.

Definition 3.
The following definition is a natural extension of the usual
modular multiplication [1]. For a fixed integer n and num-
bers A, B, and N, N > 0, the MultModDiv instruction is
defined as
(Q,R) = MultModDiv(A, B, N)

with
Q=45
R:=(AxB)—Q=xN.

Definition 4.
For a fixed integer n and numbers A, B, C, and N, N > 0,
the MultModDivInitn instruction is defined as
(@, R) = MultModDivInitn(A, B,C, N)
with
Q .= I_A*B—;[C*2 J

R:=(Ax*xB+C=%*2n)—QxN.

III. THE DOUBLING ALGORITHM

A. Modular Multiplicatoin without Initialization
Theorem 1.
There exists an algorithm to compute A * B mod N using
seven MultModDiv instructions of length n, provided that
22n=1 < N < 22" and 0 < A, B < N.
proof: we will first present the algorithm.

Blasic Doubling Algorithm
Input:

N = Nt2™ + Nb with 0 < Nb < 2™,
A = At2™ + Ab with 0 < Ab < 2™,
B = Bt2"™ + Bb with 0 < Bb < 2™.

1: (@', R') = MultModDiv(Bt,2", Nt)

2: (Q?% R?) = MultModDiv(Q*, Nb,2")

3: (@3 R3) = MultModDiv(At, R* — Q% + Bb, Nt)
4: (Q*,R*) = MultModDw(Ab Bt, Nt)

5. (Q%, R®) = MultModDiv(Q? Q4 Nb,2")

6: (Q° R%) = MultModDiv(At, R2 2m)

7: (Q",R") = MultModDiv(Ab, Bb,2")

8 Q:=(RP+R*'-Q°-Q°+Q")

9: R:=(R" - RS- RS

10: make final reduction on (Q * 2" + R)
Output: Q *2" + R

From the Input equations, we will get:

1._ | Bt«Z
Q ‘_I-N*t

R':=(BtxZ)— Q' Nt
1*

Q= |45
R?:= (Q'+*Nb) - Q%+ Z
Q3 — I_At*ngle—',-BbJ

° t
R3:= (At* R' — Q%+ Bb) — Q* x Nt
Q"= | 2P

: t
R*:= (Abx Bt) — Q* x Nt
Qb = L(Q3+%4)*NbJ
B := ((Q°+QY)*Nb) —Q°+ Z

Q= [447

RS := (AtxR>) - Q%% Z
Q7 = LAb;BbJ
R":= (AbxBb) - Q"% Z

The author in [1] tried to prove that
(R3+R4—Q5—Q6+Q7)*2n+(R7—R6—R5)
is indeed congruent to A * B mod N. This demonstration
can be easily shown as follows, where Z = 2" as abbrevia-
tion.

(AtZ + Ab) x (BtZ + Bb)
= AtBtZZ + AtBbZ + AbBtZ + AbBb
= At(R' + Q' Nt)Z + AtBbZ + AbBtZ + AbBb
= AtR'Z + AtQ'(—Nb) + AtBbZ + AbBtZ + AbBb
= (R® + AtQ? — AtBb + Q*Nt)Z — AtNbQ' + AtBbZ +
AbBtZ + AbBb
=R3Z+AtQ*Z — AtBbZ + Q3NtZ — AtNbQ" + AtBbZ +
AbBtZ + AbBb
=R37 4+ AtQ?7Z + Q3NtZ — AtNbQ' + AbBtZ + AbBb
= RPZ+AtQ*Z+Q3NtZ— AtNbQ'+(R*+Q*Nt)Z+AbBb
= (R*+RYZ+((Q*+Q*)NtZ + AtQ?Z — AtNbQ"' + AbBb
= (R*+RYZ+((Q*+Q*)NtZ + AtQ*Z — At(R*+ Q% Z) +
AbBb
= (R*+ RY)Z + (@ + Q*)NtZ — AtR? + AbBb

R*+RYZ + (@ + Q*)NtZ — (R"
R34+ R*—Q%Z + ((Q*+ Q*)NtZ — R® + AbBb
Q"‘)Z+((Q3+Q4)Ntz R®+(R"+Q"7)
)
Q% z

+Q%Z) + AbBb

= (

= (

(

=(R*+R' +Q" - +((Q° +Q*)(=Nb) + (R" — R°)

(— ((R*+Q°2) + (R" — R°)

(- Q6 +Q")Z + (R" — R® — R®)modN
However, this demonstration is based on the fact that

NtZ = —Nb mod N. Otherwise, it would fail from the

third to the fourth equation. Using the “ associative law ”

to switch the parameters of the input equations completes

the proof. Note that if the given module N has an odd

bitlength, then one has to compute with 2".

B. Modular Multiplicatoin with Initialization
Theorem 2.
There exists an algorithm to compute A * B mod N using
five MultModDiv instructions and one MultModDivInitn
instruction of length n, provided that 22" ! < N < 227
and 0 < A,B<N.
proof: we will present the algorithm.

Basic Doubling Algorithm
Input:

N = Nt2™ + Nb with 0 < Nb < 2™.
A = At2™ + Ab with 0 < Ab < 2™.
B = Bt2" + Bb with 0 < Bb < 2™.

MultModDiv(At, Bt, Nt)
MultModDivInitn(Nb, —Q', Rt, Nt)
MultModDiv(At, Bb, Nt)
MultModDiv(Ab, Bt, Nt)
MultModDiv(Ab, Bb, 2™)
MultModDiv(Q? + Q3 + Q3, Nb,2™)
Q°%)

: make final reduction on (@ * 2" + R)
utput: Q x2" + R

() =
() =
(Q3 R®) =
() =
() =

Q:=(R*+R*+R* +Q° -

1

2

3

4

5:

6: (Q6 R%) =
7.

8 R:=(R®- RS
9:
(0]

From the Input equations, we will get:
Ql At*Bt

R! := (At * Bt) —Q'x Nt
._ | Nox(—Q'+R!s2"
Q? = | b -)|

R? := (Nbx (—Q* + R' x2™)) — Q? x Nt
Q3 = |AuBb

R3 := (At x Bb) — @Q* x Nt
Q4 . I_Ab]\}ktBt
R*:= (Abx Bt) — Q* x Nt
Qs = LAb;BbJ
R5:= (AbxBb) — Q%+ Z

2 3 4*
QS := I_(Q +Q -Zi-Q)NbJ

RS := ((Q7+Q%+Q") « Nb) - Q°+ Z

At this point, the author in [1] tried to prove that
(Rz+R3+R4+Q5_Q6)*2n+(R5_R6)
is indeed congruent to A x B mod N. This demonstration
can be easily shown as follows, where Z = 2™ as abbrevia-
tion.

(AtZ + Ab) x (BtZ + Bb)
= AtBtZZ + AtBbZ + AbBtZ + AbBb
= ((Q'Nt+ R)ZZ + AtBbZ + AbBtZ + AbBb
= (R'Z — Q*'Nb)Z + AtBbZ + AbBtZ + AbBb
(Q2Nt + R?)Z + AtBbZ + AbBtZ + AbBb
= (R?>Z — Q>Nb) + AtBbZ + AbBtZ + AbBb
(R2Z Q%Nb) + (@3Nt + R®)Z + AbBtZ + AbBb
(R2Z Q>Nb)+(Q*Nt+R?*)Z+(Q*Nt+ R*)Z + AbBb
= (R?Z—Q*Nb)+(Q>Nt+R3*) Z+(Q*Nt+R") Z+(Q°Z+
5
)
= (RP+RE+R* +Q%Z + ((Q* + @ + Q*)(—Nb
R%))modN

bd

) +

After going through the demonstration, what I found
from the proposed algorithm is that the value of the pa-
rameters in the equation for Q% and R® should be changed
to
(Q%, R%) := MultModDiv(Q? + Q% + Q*, Nb, 2").

The author in [1] proposed this instruction as
(Q%, R®) := MultModDiv(Q? + Q3 + Q3, Nb,2™).
which will not get the final result (A * B mod N) as what

we need to prove. Therefore, the proposing algorithm is
listed as follows.

New Proposing Basic Doubling Algorithm
Input:

N = Nt2"™ + Nb with 0 < Nb < 2™.

A = At2™ + Ab with 0 < Ab < 2™.

B = Bt2"™ + Bb with 0 < Bb < 2™.

1: (Q', R') = MultModDiv(At, Bt, Nt)

2: (Q?% R?%) = MultModDivInitn(Nb,—Q*, R', Nt)
3: (@3, R3®) = MultModDiv(At, Bb, Nt)

4: (Q*, R*) = MultModDiv(Ab, Bt, Nt)

5. (Q°, R®) = MultModDiv(Ab, Bb, 2")

6: (Q%, R%) = MultModDiv(Q? + Q* + Q*, Nb,2")
7. Q:=(R°+R*+R*+Q°—Q9

8 R:=(R°— RS

9: make final reduction on (@ * 2" + R)

Output: Q *2" + R

From the Input equations, we will get:

[]Ql = LAt*BtJ

R := (At*Bt) Q'+ Nt

Q2 = LNb*(Q +R1*2")J

R? .= (Nbx (- Ql + R x2™)) — Q% x Nt
Q% = [ALBS |

Il

R3 := (At x Bb) — Q3 x Nt
Q4 — LAb*Bt
R*:= (Ab*Bt)—Q4*Nt

Qs = I_Ab;BbJ

R (Ab * Bb) — Q®x Z
L(Q +Q3+Q)*NbJ
G (@ + @ +Q4) + Nbt)— QS+ Z
The demonstration for the new proposing algorithm
would be:
(AtZ + Ab) = (BtZ + Bb)
= AtBtZZ + AtBbZ + AbBtZ + AbBb
= (R! Qth)ZZ + AtBbZ + AbBtZ + AbBb
(Rlz + Q' (—Nb))Z + AtBbZ + AbBtZ + AbBb
(RlZ Q'Nb)Z + AtBbZ + AbBtZ + AbBb
= (R?* - Q*>Nt)Z + AtBbZ + AbBtZ + AbBb
=(R?Z - Q>Nt)Z + (R®* + Q*Nt)Z + AbBtZ + AbBb

= (R?Z - @Q2>Nt)Z + (R®* + Q*Nt)Z + ((R* + Q*Nt))Z +
AbBb
=(R2+R*+RYZ + (Q* + Q3 Q?)NtZ + AbBb

=(R2+R*+RYZ + (Q*+Q*> - Q*)NtZ + (R° + @Q°2)
=(RP+R*+R*+@°)Z+(Q4+Q3 2)NtZ+R5
=(RP+R+R*+Q°)Z+ (Q*+ Q> - Q*)(—Nb) + R®
=(RP+R+R*+Q%Z - (Q>+ Q>+ Q*)Nb+ R®
=(RP+R*+R*+Q%Z - (R +Q%2) + R®
=(R+R*+R*+Q° - Q%Z + (R® — R%))modN

The changed algorithm is also based on the fact that
NtZ = —Nb mod N. However, the final proving shows the
proposing algorithm from this paper will get the corrrect
result, which completes the proof.

IV. CONCLUSION

In this paper, I demonstrated two basic doubling algo-
rithm equations, which can efficiently compute the mod-
ular multiplications. Using the instructions MultModDiv
and MultModDivInitn can improve algorithms and the re-
sults presented in [13]. However, there might be a typ-
ing mistake or different approach in [1] for the instruction
MultModDivInitn, which actually does not result better
than the one in [13]. However, the software and hardware
realizations that use this proposed instruction in [13] can
still present fast and better solutions for modular multipli-
cation. In addition, the new change proposed in this paper
will change the whole result and really make a better re-
sult compared with the one presented in [13], which is the
goal for this paper to demonstrate the correctness of the
algorithms proposed in [13].

REFERENCES

[1] W. Fischer and J.-P. Seifert, “Increasing the bitlength of a
crypto-coprocessor,” Proc. of CHES’02, vol. 2523, pp. 71-81,
2003.

[2] P.Barret, “Implementing the rivest, shamir and adleman public-
key encryption algorithm on a standard digital signal processor,”
Proc. of CRYPTO’86, vol. 263, pp. 311-323, 1987.

[3] S. Cavallar et alii, “Factoring a 512 bit rsa modulus,” Proc. of
EUROCRYPT’00, vol. 1807, pp. 1-19, 2000.

[4] J.-J. Quisquater C. Couvreur, “Fast decipherment algorithm for
rsa public-key cryptosystem,” Electronics Letters, vol. 18, no.
21, pp. 905-907, 1982.

[5] J.-J. Quisquater J.-F. Dhem, “Recent results on modular multi-
plication for smart cards,” Proc. of CARDES’98, vol. 1820, pp.
336-352, 1988.

(12]

(13]

(14]

(15]

[16]

(17]

P.Pailler H. Handschuh, “Smart card crypto-cpprocessors for
public=key cryptography,” CryptoBytes, vol. 4, no. 1, pp. 6-11,
1998.

P. Pailler H. Handschur, “Smart card crypto-coprocessors for
public-key cryptography,” Proc. of CARDIS’98, vol. 1820, pp.
372-379, 1998.

D. E. Knuth, vol. 2 of Reading MA, Addison-Wesley, 3rd edition,
1999.

S. Vanstone A. J. Menezes, P. van Oorschot, New York, 1997.
P. L. Montgomery, “Modular multiplication without trial divi-
sion,” Mathematics of Computation, vol. 44, pp. 519-521, 1985.
D. M’Raihi D. Naccache, “Arithmetic co-processors for public-
key cryptography: The state of the art,” IEEE Micro, pp. 14-24,
1996.

J. Omura, “A public key cell design for smart card chips,” Proc.
of IT Workshop, pp. 27-30, 1990.

P. Pailler, “Low-cost double size modular exponentiation or
how to stretch your crypto-coprocessor,” vol. 1560, pp. 223-
234, 1999.

J.-J. Quisquater, “Encoding system according to the so-called
rsa method, by means of a microcontroller and arrangement im-
plementing this sytem,” US Patent Nr. 5,166,979, November 24,
1992.

H. Sedlak, “The rsa cryptographic processor: The first high
speed one-chip solution,” Proc. of EUROCRYPT’87, vol. 293,
pp- 95-105, 1998.

J.-J. Quisquater D. de Waleffe, “Corsair, a smart card for public-
key cryptosystem,” Proc. of CRYPT 0’90, vol. 537, pp- 503-513,
1990

C. Walter, “Techniques for the hardware implementation of
modular multiplication,” Proc. of 2nd IMACS Internet. Conf.
on Circuits, Systems and Computers, vol. 2, pp. 945949, 1998.

