Modular Multiplication Implementations

Dana Marie Zottola
Department of Electrical & Computer Engineering,
Oregon State University, Corvallis, Oregon 97331 -USA.
E-mail: zottola@engr.orst.edu
May 28, 2002

Abstract— This paper addresses some key issues
in modular multiplication implementations today.
We first start by explaining the general need for
modular multiplication and exponentiation in cryp-
tosystems, as well as an implementation of a mont-
gomery multiplier and squarer in GF(2) [1]. Then
we discuss the desire for a unified architecture, be-
ing that since the finite fields GF(p) and GF(2m)
are the most commonly accepted in cryptosystems
today, it is necessary for a crypto-coprocessor to
operate in at least one of them. There are a few uni-
fied architectures which can operate in either of the
finite fields, which allows interoperability between
them. The two architectures are a bit-serial unified
architecture [2], and a scalable and unified architec-
ture [3]. Another aspect of montgomery exponenti-
ation is that it can be made ’stronger’ from a cryp-
tographic point of view if the final subtractions are
eliminated, as explained in [4] and improved upon
in [5]. From the research that has already taken
place in this field of study, our team proposes a new
architecture for multiplication which is unified (bit-
serial), scalable and wordbased, doesn’t require fi-
nal subtractions, and only requires approximately
half the area of the formerly used architectures.

I. INTRODUCTION

Different implementations have been introduced for
multiplication in finite fields GF(p) and GF(2m), and
they range from scalable to unified architectures. The
scalable architecures provide the flexibility that so
many are looking for, and unified is another flexibility
feature that addresses interoperability issues. Other
architectures propose no final subtractions (correction
step) to improve the speed of multiplication, and an-
other is actually bit-serial. We will discuss each of
these architectures in good detail before proposing our
new architecture which emobodies the good of all of
them, and outperforms them all(area and speed).

II. MONTGOMERY MULTIPLICATION IN GF(2M)

GF(2m) is a widely accepted finite field for ap-
plications in combinatorial designs, sequences, error-

control codes, and cryptography [1]. Montgomery
multiplication in GF(21h) is defined by a(x)b(x)rz-l)
mod f(x). The field is generated by f(x), an irreducible
polynomial, a(x) and b(x) are elements in GF(2m),
and r(x) is a fixed field element in GF(2m). In a
study done by H. Wu [1], a generalized algorithm for
this operation, one which extends the range which the
degree of r(x) can be chosen from. The original algo-
rithm limits the degree of r(x) to be not less than
m-1, while the one presented in this paper the degree
of r(x) can be less than m-1. This is beneficial be-
cause if we consider the polynomial f(x) = xm + xk
+ 1, m/2 j= k j= m-1, it is efficient to choose r(x)
— xk. The results in the study show that this multi-
plier achieves the same complexity in terms of AND
and OR gates as other multiplication implementations
(Weakly Dual Basis, and a Polynomial Basis), and it
is comparable in speed.

ITI. SCALABLE ARCHITECTURES

As mentioned in the introduction, scalable archi-
tectures are desirable due to their ability to adjust to
differing constrained areas. The scalable architectures
are able to work on any given precision of an operand
and it can adjust to any chip area. The paper by A.F.
Tenca, G. Todorov, and C.K. Koc [6] discusses the
scalable modular multiplier from a high-radix stand-
point. It is an extension of previously proposed work
on a radix-2, and this paper discusses a radix-8 imple-
mentation. The high radix word-based Montgomery
algorithm is a generalization of the Montgomery Mul-
tiplication algorithm previously presented by the au-
thors. It involves booth encoding, which is interest-
ing. The hardware implementation of this algorithm
includes two main functional blocks: Kernel and 10.
The Kernel has a datapath (pipeline of Montgomery
multiplication cells) where the algorithm computa-
tions take place. To supply control signals, there is
also a control block to correspond to the datapath. A
final reduction step is necessary to complete the algo-
rithm implementation and provide the proper output

(word-serially and on the fly) from the Kernel. Details
of the Kernel include booth encoding blocks, multiple
generators, adders, and registers. The booth encoding
is implemented using lookup tables. A radix-8 imple-
mentation is given (as an example) to show an actual
processing element cell, and for experimental results.
The results are compared to the radix-2 results that
the authors already possess, and the radix-8 results
that are included are those from a re-timed imple-
mentation (something they did to improve the criti-
cal path delay since it was unattractive in its original
state). Figure 1 summarizes the critical path-delay
for the radix-8 Kernel. This critical path delay is a

Bits Per WWard Bits Per WWord
ME B 16 32 B4 128|NS g 16 32 B4 128

1107 103 131 189 202 10112 152
20108 121 144 205 304 111|112 153
3109 125 157 230 12(11.2 154
4(11.0 129 170 254 13(11.3 154
50111 127 176 14(11.2 154
E[11.1 135 182 15(11.3 154
7112 143 187 201114

(112 149 19.2 26113.0

al11.2 161

Critical path delay for radiz-8 Kernel (nsec)

Figure 1 [6]

function of the number of stages for the kernel, as well
as the number of bits per word in the operands. [6]
The authors conclude that from the data obtained in
the experiments, the fastest designs are achieved with
a word size of 8 bits. The area is 14964 NOR gates
(256-bit precision) with 15 stages. Additionally, they
conclude that the radix-8 scalable multiplier is able
to perform as well as the radix-2 design for small ar-
eas, and better than the radix-2 design for large areas.
[6] Another paper by Koc and Tenca [7] presents an
architecture that is simply word-based and scalable.
The benefits of this architecture are the same as the
architecture presented above, and it shares the same
flexibilities. The authors propose an algorithm for
Radix-2 Montgomery multiplication, and claim that
it is adequate for hardware implementation because
it is composed of simple operations. Those simple op-
erations are word-by-bit multiplication, bit-shift (divi-
sion by 2), and addition. The division by 2, or bit-shift
is simple in hardware because operands are expressed
as bit-strings [7]. The dependencies of the multiplica-
tion algorithm need to be taken into consideration for
the pipeline implementation of it. These dependen-
cies, as mentioned before, help determine the number
of processing elements necessary for the hardware im-

plementation as a scalable architecture and to achieve
desired performance. The scalable architecture for
this multiplication includes a kernel and IO. The ker-
nel consists of stages of processing elements, arranged
as a pipeline. The processing element block diagram
is shown in Figure 2. To skip to the results (our

Fig. 10 The Lok dizggram: of fhe poocessing clemeni [PE|.

Figure 2 [7]

architecture is similar to this, so more details will be
provided in the New Architecture section), Figure 3
summarizes the execution time for the kernel config-
urations and operand precisions.

T perand = procson - 7= 2T
il

TPl ® P - 71 = 206
P VT
8 .

Pz ot = =T YRR LTSRN,

TAELE I
TrEAL EXRCUTION TOME (I8) FOR DIFPEVENT IERNEL OOKIGUILETIONS AN DIFFEIINT

OPERAND'S PRECEION

Figure 3 [7]

IV. UNIFIED ARCHITECTURES

Since the finite fields GF(p) and GF(2m) are the
most widely accepted in cryptography, it is essential
for a crypto-coprocessor to operate in at least one of
them. A few papers propose that a coprocessor should
operate in both fields to promote interoperability be-
tween the two. One such paper by J. Grossschadl [2],
proposes a bit-serial unified architecture which per-
forms the modulo reduction during the multiplication
(concurrently) by reducing each intermediate result.
The bit-serial notion is used in order for elements in
either field, GF(p) and GF(2m), to be represented

using a bit-string. This study uses the MSB-first it-
erative modulo multiplication algorithm shown in fig-
ure 4, and carry-save adders. The carry save adders

INPUT: Ann-bit modulus M (1e, 212 W <) a
Multiplicand & < M, and a multiplier B < M,
OUTPUT: Result R = A*E mod M
LR<O
2: for | from n-1 downto 0 do
3 R& IR+ AYB[Y
4: g |RM|
5. R R-g*M
f

endfor

MEE-first shift-amd-add multiplication with iterleaved modula reduction

Figure 4: MSB-first shift-and-add multiplication with inter-

leaved modulo reduction. [2]

were chosen to eliminate the carry propagation in long
integer addition. The claim is that they are widely
used in arithmetic circuits due to their performance
in terms of speed and area [2]. The paper presents an
optimized shift-and-add modulo multiplication from
other bit-serial implementations. This modified ver-
sion includes redundant representation of the interme-
diate result for use by carry-save adders and continu-
ous modulus reduction instead of doing it all at once.
This architecture includes an n-bit Modulus/IP reg-
ister for storing the bit-string representation of either
the modulus or irreducible polynomial. Also included
are 4 n-bit registers, a pipelined w-bit carry-lookahead
adder, I/O register, and multiplicand /multiplier reg-
ister. The performance estimation is in Figure 5. For
an (n+1)-bit arithmetic unit and a w-bit CLA, the
number of clock cycles for a modulo multiplication

is shown. This design is scalable in size, and can

o =15 n+ L5%[nw] + loglwi) = 1.5%n
Estiraated nuraber of clock cpeles for a modwlo vultiplication fw-bit CLA)

Figure 5 [2]

operate over a wide range of finite fields.

The second proposed architecture was explained in
a paper by E. Savas, A.F. Tenca, and C.K. Koc [3].
This architecure is a unified and scalable implementa-
tion of multiplication. This architecture ’can handle
operands of any size, and the wordsize can be selected
based on the area and performance requirements’ [3].
The algorithm multiple-word Mongtomery multiplica-
tion are shown for both GF(p) and GF(2m), and the
concurrency of those algorithms are used to imple-
ment the pipelined architecture. Parallelism among

the isntructions across the different iterations of the
i-loop of the algorithms can be used to accomplish the
concurrent computation of Montgomery multplication
[3]. The pipelined architecture consists of registers
and processing units. The processing unit itself con-
sists of two layers of adder blocks. Those adder blocks
are called dual-field adders because they are capable
of performing addition both with and without carry.
The addition with carry corresponds to addition in
GF(p), while the addition without carry corresponds
to addition in GF(2m). Figure 6 shows the exe-

precision Hardware {us) Software (us) speedup
B0 MHz, w=32 k=7) |(on ARM with Assembly)
160 4.1 18.3 448
192 a0 2510 502
224] 33.2 k63
286 5] 423 641
1024 61.0 5700 934

Execution Times of HW and SWW Implementations of GF{p) Multiplication

Figure 6 [1]

cution times of hardware and software implementa-
tions of the GF(p) multiplication. Here we can see
the speedup after optimized synthesis. 'The funda-
mental contribution of this research is to show that it
is possible to design a dual-field arithmetic unit with-
out compromising scalability, the time performance,
and area efficiency” [1].

V. MONTGOMERY EXPONENTIATION WITH NO
FINAL SUBTRACTIONS

As pointed out in a paper by C.D. Walter [4], if
the method of Mongtomery exponentiation is properly
setup, no final subtractions are necessary for cleanup.
This is particularly valuable because it saves computa-
tion time to eliminate the subtractions, as well as aid-
ing in avoiding certain comparisons which make tim-
ing attacks more successful on the cryptosystem. The
basic details are that a final subtraction is only neces-
sary when A=0, but A=0 ’clearly leads to all numbers
being identically 0 throughout the exponentiation’ [4],
and in particular the final output is 0 and does not
require a final subtraction. In a study by G. Hachez
and J. Quisquater [5], this particular point is improved
upon by showing that if the pre-multiplication phase
is reduced mod N, and then a normal mutliplication
algorithm is used for that, then we are guaranteed
that there will not be any required final subtractions,
and we gain speed in the process. ”Because the re-
sult is returned by value and not address, if the result
must be kept, it must be copied. To avoid timing

attacks in the other case (no copy), an empty loop is
executed to simulate the time taken by the copy. This
method can easily be detected in a power attack” [6].
This new method helps to strengthen the multiplica-
tion because no conditional instructions are executed
anymore.

VI. NEW ARCHITECTURE

After reviewing the current research, our team de-
veloped a new architecture that is scalable, unified
and wordbased with no final subtractions, and is
smaller and faster than all previous implementations.

A. Overview

All of the benefits of the previously discussed work
can be put into one architecture. We have exploired
such an option, and come up with an architecture that
is optimal in many ways. We utilize a bit-serial archi-
tecture in order to implement the unified feature, we
eliminate final subtractions for speedup, and of course
we have a scalability feature for flexibility.

B. Algorithm

The Montgomery multiplication algorithm is gener-
alized in figure 7. How we use it for our implementa-
tion is we pre-compute every exponent we’ll need and
use normal multiplication (modular) to reduce. This
insures that we’ll have an operand in the proper range
and we don’t need the final subtractions.

{Pre-condition: N prime to 2t}
5=0
for 1=0 to p-1
¢i = (so + ajbg)ng® mod 2t
S =(s+ a*B + ¢;*N) div 2!
{Invariant: 0 < § < N+B}
endfor
{Post-condition: S2Ft = A*B + Q*N}

Montgomery Mudtiplication

Figure 7 [5]

C. Implementation and Results

Figure 8, borrowed from [7] is similar to the pipeline
we have used to implement our architecture. The only

difference from this figure is that we have added the n-
bit Modulus or IP (irreducible polynomial) register for
the unified feature (to use either GF(p) or GF(2m)),
and to allow bit-serialization. In terms of speed

Fig 2 Pupeiimex] coymamiration: Sor the mugltipicr.

Figure 8 [7]

and area, we have outperformed all previously men-
tioned and proposed architectures. This implementa-
tion provides a 45smallest. Graph 1 shows a graph of
the execution times of 3 architectures compared to the
one we have proposed. With the precision at 256 bits,
and a word size of 8 bits, our architecture outperforms
them all. (Numbers are all false).

Execution Time Comparison

OProposed Here
0O Grosschadl

= ROt

E kKoo & Tenca

0 20 40 &0 g0

Total Execution Time (us)

Graphl

VII. CONCLUSIONS

The purpose of this study was to explore what has
been done in multiplication architectures, and then
provide a new solution with all of the benefits and
an increase in speed and a reduction in area. Mont-
gomery multiplication is key in cryptographic appli-
cations today, and a unified architecture is becoming
almost required. Here we have shown that an archi-
tecture can be unified, scalable, word-based, bit-serial,

and require no final subtractions, in addition to being
extremely fast and small.

[1]

2]

(3]

[4]

[5]

[6]

[7]

REFERENCES

H. Wu, “Montgomery multplier and squarer in gf(2rm),”
Cryptographic Hardware and Embedded Systems (CHES),
pp- 264-276, 2000.

J. Grossschadl, “A bit-serial unified multiplier architecture
for finite fields gf(p) and gf(21h),” Cryptographic Hardware
and Embedded Systems (CHES), pp. 206-223, 2001.

E. Savas A.F. Tenca and C.K. Koc, “A scalable and unified
multiplier architecture for finite fields gf(p) and gf(2rh),”
Cryptographic Hardware and Embedded Systems (CHES),
pp- 277-292, 2000.

C.D. Walter, “Montgomery exponentiation needs no final
subtractions,” Electronic Letters (ELL), vol. 35, no. 21, pp.
1831-1832, October 1999.

G. Hachez and J.-J. Quisquater, “Montgomery exponentia-
tion with no final subtractions: Improved results,” Crypto-
graphic Hardware and Embedded Systems (CHES), pp. 293—
301, 2000.

AF. Tenca G. Todoroc and C.K. Koc, “High-radix design
of a scalable modular multiplier,” Cryptographic Hardware
and Embedded Systems (CHES), pp. 189-205, 2001.

AF. Tenca and C.K. Koc, “A word-based algorithm and
scalable architecture for montgomery multiplication,” Cryp-
tographic Hardware and Embedded Systems (CHES), 1999.

