
Digital Signature Schemes and Their Realization
CS290G Project

Esra Küçükoğuz

UCSB

Submitted to: Çetin Kaya Koç

12.8.2008



Content

◮ RSA

- Algebraic Attack

◮ DSA

◮ ECDSA

◮ Parallelization of ECDSA Signature Generation

- Parallelization
- Securing the Point Multiplication
- Securing the Modular Inversion

◮ Accelerating (EC)DSA Signature Verification

◮ EC Optimization

- Point Halving Algorithm

◮ Hash Functions

◮ Key Collisions in (EC)DSA



RSA Digital Signature

◮ public keys: kpub = (n, b)

◮ private keys: kpr = (p, q, a)

◮ where n = p · q
Finding private key of RSA is as hard as the factoring problem

Signature:

◮ y = Sigkpr
(x) = xa(modn)

Verification:

◮ Check if x = Verkpub
(y) = yb(modn) ?

If they are not equal, signature is invalid.



Algebraic Attack on RSA

◮ If (x , y) and (x ′, y ′) are known:

◮ x ′′ = (x · x ′) and y ′′ = y · y ′ = (x · x ′)a(modn)

◮ y ′′ is a valid signature for x ′′ which is actually never signed by the
private key owner.

To prevent Algebraic Attack:
append z to x so y ′′ is not a valid signature for x ′′ anymore

◮ xnew = x |z and x ′
new = x ′|z

◮ Therefore, ynew · y ′
new 6= (xnew · x ′

new )a(modn)



DSA

◮ Digital Signature Algorithm (DSA) is based on El-Gamal Signature
scheme.

◮ Finding private key of DSA is as hard as the discrete logarithm
problem.

◮ public keys: kpub = (β, α, p)

◮ private keys: kpr = (a)

◮ where α is a primitive element in Z ∗
p

◮ and β = αa(modp) with a is a random ∈ {2, 3, . . . , p − 2}



DSA

Signature:

◮ Choose a random k ∈ {0, 1, 2, . . . , p − 2} such that
(gcd(k , p − 1) = 1)

◮ Compute signature Sigkpr
(x , k) = (γ, δ)

◮ γ = αk(modp)

◮ δ = (x − a · γ) · k−1(modp − 1)

Verification:

◮ Compute Verkpub
(x , (γ, α)) = βγ · γδ

◮ If result equals αx(modp), then signature is valid.



ECDSA

◮ ECDSA is also based on El-Gamal Signature scheme.

◮ There is no known subexponential-time algorithm for the elliptic
curve discrete logorithm problem.

◮ With the same security level for RSA, DSA, and ECDSA; ECDSA is
the one that requires shortest key lenght.

◮ This makes ECDSA more attractive with less memory and
bandwidth requirement.

◮ public keys: kpub = (E ,P ,Q)

◮ private keys: kpr = (d)

◮ where E is the elliptic curve, P = (xp , yp) is the base point that
belongs to the curve and has a prime order, Q = (xq , yq) = d · P ,
and d is a random integer ∈ [1, n− 1]



ECDSA

Signature:

◮ Choose a random k ∈ {1, 2, . . . , n− 1}
◮ Compute signature Sigkpr

(x , k) = (γ, δ) and P ′ = (x ′, y ′) = k · P
and h = H(x)

◮ γ = x ′(modn)

◮ δ = k−1(h + d · γ)(modn)

Verification:

◮ If γ and δ are not ∈ [1, n− 1], signature is invalid, ow:

◮ Compute h = H(x) and ω = δ−1(modn) υ1 = h · ω(modn)
υ2 = γ · ω(modn) R = (xr , yr ) = υ1 · P + υ2 · Q

◮ If γ = xr (modn), then signature is valid.



A Parallelization of ECDSA Signature Generation

The Original Implementation

1. e = SHA-1(t)

2. choose a random k ∈ [1, n− 1]

3. compute k · G = (x1, y1) and γ = x1(modn). If γ = 0, go to step 2.

4. compute z0 = (e + d · γ)(modn)

5. compute δ = k−1 · z0(modn). If δ = 0, go to step 2.

6. output the signature (γ, δ)

where t is the message and d is the private key



A Parallelization of ECDSA Signature Generation

◮ In ECDSA, the point multiplication is the most computationally
intensive operation. It is the step 3 in the original algorithm in the
form of k · G , where G is the fixed base point and k is a random
integer number ∈ [1, n− 1]

◮ Step 4 has a modular multiplication

◮ Step 5 has a modular division which can be computed with a
modular inversion algortihm.



A Parallelization of ECDSA Signature Generation

◮ Parallel implementation is a good design choice with the advantage
of:

◮ improving the performance
◮ reducing the requirement for gate count

◮ Which steps to parallelize?
◮ Step 3 (point multiplication)can be parallelized.
◮ Some portion of step 4 and 5 (multiprecision arithmetic) are

independent of the step 3, therefore could be executed concurrently
with step 3



A Parallelization of ECDSA Signature Generation

Parallelization

◮ Let’s have two processing units P1 and P2.

◮ P1 executes some of the multiprecision arithmetic and also some of
the point multiplication operation.

◮ P2 executes the remaining of the point multiplication operation.

◮ P2 is faster than P1 by a factor of Θ

◮ It is assumed that a microprocessor always exists and a hardware
accelerator is implemented to improve the ECDSA performance.

◮ P1 corresponds to the microprocessor and P2 corresponds to the
hardware accelerator.



A Parallelization of ECDSA Signature Generation

Parallelization
◮ The idea is one of the processing units can compute k1 · P and other

can compute k2 · Q and then add these two points to get k · G
◮ k · G = k1 · G + 2m1 · k2 · G = k1 · G + k2 ·Q
◮ k = k1 + 2m1 · k2

◮ Q = 2m1 · G . Q is precomputed and stored.
◮ k = k1 + 2m1 · k2

◮ and m1 = ⌊m/(Θ + 1)⌋ where m is the size of n in bits

◮ Since k2 has Θ times as many bits as k1 has, P1 and P2 is going to
take approximately the same time to complete their assigned
computations.



A Parallelization of ECDSA Signature Generation

The Parallel Implementation

1. e = SHA-1(t)

2. choose a random k ∈ [1, n− 1]

3. compute z1 = k−1(modn)‖ compute P2 = k2 ·Q
4. compute z2 = z1 · d(modn)‖
5. compute z3 = z1 · e(modn)‖
6. compute P1 = k1 · G
7. compute k · G = P1 + P2 = (x1, y1) and γ = x1(modn)

8. compute δ = (z3 + z2 · γ)(modn). If δ = 0 or γ = 0, go to step 2.

9. output the signature (γ, δ)

In steps 3 to 6, right side is computed by processing unit P2. Left side of
steps 3 to 6 and the other remaining steps are computed by processing
unit P2. It is preferred that P1 executes the additional steps therefore
gate count of P2 can be reduced.



SPA Attack on ECDSA

◮ In Simple Power Analysis attack, the attacker uses the relationship
between the power consemed and the instructions performed by the
processor to find the k. By using k and the signature, private key
can be computed with the formula d = γ−1(k · δ − e)

◮ In the original ECDSA implementation, the point multiplication and
modular inversion operations are not resistant to SPA attacks.

◮ In the parallel implementation, the point multiplication and modular
inversion operations are executed concurrently in parallel which
makes the power trace of the two executions cover for each other.



Securing the Point Multiplication

Montgomery Point Multiplication
Input: k = (km−1, . . . , k0)2 with km−1 = 1 and P = (x , y) ∈ E (GF(2m))
and curve parameter b. Output: k · P

1. X1 ← x , Z1 ← 1, X0 ← x4 + b, Z0 ← x2.

2. For i from m − 2 to 0 :

2.1 If ki = 1 :
T ← Z1, Z1 ← (X1 · Z0 + X0 · T )2, X1 ← x · Z1 + (X1 · Z0)(X0 · T )
T ← X0, X0 ← X 4

0 + b · Z 4
0 , Z0 ← T 2 · Z 2

0

2.2 Else:
T ← Z0, Z0 ← (X1 · T + X0 · Z1)

2, X0 ← x · Z0 + (X1 · T )(X0 · Z1)
T ← X1, X1 ← X 4

1 + b · Z 4
1 , Z1 ← T 2 · Z 2

1

3. x2 ← X1/Z1.

4. y2 ←
(x+X1/Z1)[(X1+x ·Z1)(X0+x ·Z0)+(x2+y)(Z1 ·Z0)](x ·Z1 ·Z0)

−1+y .

5. return (x2, y2)



Securing the Point Multiplication

◮ Montgomery point multiplication is an efficient algorithm with
6 ·m + 10 field multiplications and 1 field inversion defined over
GF(2m). It also requires no precomputation.

◮ Although it is not easy, if one can distinguish between steps 2.1 and
2.2 by using power analysis, then the attacker will be able to find k.

◮ Therefore, this algorithm should be modified such that it is resistant
to SPA attacks.

◮ The modified implementation is ressistant to SPA attacks with the
assumption of power trace of swap functions is not distinguishable.

◮ The modified implementation has same number of field
multiplications and inversions with the original Montgomery point
multiplication algorithm.



Securing the Point Multiplication

SPA Resistant Implementation of Point Multiplication

◮ Change Step 2:

◮ For i from m − 2 to 0 :
R1 ← X1 · Z0

R2 ← X0 · Z1

R3 ← X1−ki

Zki
← (R1 + R2)

2

Xki
← x · Zki

+ R1 · R2

X1−ki
← R4

3 + b · Z 4
1−ki

Z1−ki
← R2

3 · Z 2
1−ki



Securing the Modular Inversion

Binary extended gcd algorithm
Input: Integer k such that k < n where n is a large prime number
Output: C = k−1(modn)

1. u ← k , v ← n, A← 1, C ← 0.

2. while u is even:

2.1 u ← u/2
2.2 if A is even, then A← A/2, else A← (A + n)/2

3. while v is even:

3.1 v ← v/2
3.2 if C is even, then C ← C/2, else C ← (C + n)/2

4. 4.1 If u ≥ v then u ← u − v , A← A− C

4.2 else v ← v − u, C ← C − A

5. If u = 0, then:
◮ if C > 0 return C
◮ else return n + C

else go to step 2.



Securing the Modular Inversion

◮ In the binary extended gcd algorithm, step 1 can be modified such
that it can perform modular division. Instead of initializing A with 1
it can be initialized with z0

◮ In the algorithm, at each iteration either step 2 or step 3 is executed.

◮ An attacker can find k by using the number of times the steps 2 and
3 are executed and/or the conditionality in step 4

◮ To make this algorithm resistant to power analysis attacks, we can
multiply k with a random number ψ and compute (k · ψ)−1 and
multiply again with ψ. This can help, but requires 2 additional
modular multiplications.

◮ A better solution exists where finding k is computationally expensive.



Securing the Modular Inversion

Modification

◮ Change Step 4:

◮ auv+ ← addru
auv− ← addrv
aAC+ ← addrA
aAC− ← addrC
if (u < v)

◮ swap (auv+, auv
−

)
◮ swap (aAC+, aAC

−
)

sub (auv+, auv−)
sub (aAC+, aAC−)



Securing the Modular Inversion

Modification Cont.

◮ Store the addresses of the variables u, v , A, and C in auv+, auv−,
aAC+, and aAC−.

◮ sub(aAC+, aAC−) corresponds to the operation
∗aAC+ ← ∗aAC+ − ∗aAC− where ∗ stand for the value pointed by
that variable.

◮ Swap functions are the only steps containing conditionality in this
algorithm. Therefore, if it is assumed that swap functions are
indistinguishable in terms of power trace, then the modified
algorithm is resistant to SPA attacks.



Accelerating (EC)DSA Signature Verification

◮ Computing u1 · G + u2 · Q is a time consuming step in ECDSA
signature verification.

◮ The point G is common for many signers, because usually EC
parameters are taken from a standard.

◮ If signature verification is done repeatedly i.e. in an airport
immigration office, then some common parameters are computed
repeatedly in each verification.

◮ Intermediate results can be cached and stored to use in some of the
future signature verification.

◮ In the long run, caching can help to reduce the total time for
verification of a set of signatures.

◮ Note that: no assumption of all G ’s are common. Instead: In a set
of signatures, some of them share same G .



Accelerating DSA and ECDSA Signature Verification

Use Caching to speed-up Multi-Exponentiation

◮ Multi-exponentiation:
∏

1≤i≤k g ei

i

◮ gi ’s are fixed base elements for i ∈ [2, k ] where g1 is a variable and
can reoccur in different signatures.

◮ For an appearing g1 create the cache entry in the form of
(g1, (λ1,G1), . . . , (λs−1,Gs−1))

◮ where λ is an integer and Gi = gλi

i



Accelerating DSA and ECDSA Signature Verification

Use Caching to speed-up Multi-Exponentiation

◮ Whenever a cache entry is available for g1:
◮ First, parse the cache entry
◮ Split e1 into integers E1 :

- d0 = e1

- for 1 ≤ i ≤ s − 1 :

- Ei = ⌊di−1/λi⌋
- di = di−1 − Ei · λi

- Es = ds−1

◮ Apply modular exponent splitting and radix-2 exponent splitting to

g
e1

1 = G
E1

1 . . . G
Es−1

s−1 · g
Es
1 :



Accelerating DSA and ECDSA Signature Verification

Use Caching to speed-up Multi-Exponentiation

◮ whenever a new g1 value is seen, output some intermediate results.

◮ whenever an old g1 value appears, use cached intermediate results to
speed-up the verification process.(previous page)

- old value refers to a g1 value which has a corresponding entry in the
cache.

- since cache entry takes read/write memory, it is not possible to put
all g1’s to cache, some of them can be deleted later which makes
that g1 new again.



EC Software/Hardware Optimization

Point Halving Algorithm

◮ Point multiplication is a computationally expensive operation of
ECDSA.

◮ Instead of point doubling, one can use point halving and speed-up
the point multiplication.

◮ Let’s take a point P = (xp , yp), and find a point Q = (xq , yq) where
2 · Q = P .

◮ Point Halving algorithm speeds up in software by a factor two to
three with compared to point doubling algorithm.



EC Software/Hardware Optimization

Point Halving Algorithm over GF(2m)
Input: P ∈ E
Output: Q = 1/2 · P such that Q ∈ E

1. Mh = QuadraticSolve(xP + a), a is EC parameter

2. T = xP ·Mh + yP

3. if parity(T , tm) = 0: Mh = Mh + 1 and T = T + xP

4. xQ =
√

T

5. rQ = Mh + xQ + 1

6. yQ = xQ · rQ



EC Software/Hardware Optimization

Point Halving Algorithm

◮ Step 1: QuadraticSolve can be implemented in hardware with a
small number of XOR gates

◮ Step 3: tm is a mask and depend on the polynomial modulus.

◮ When yQ is not required it can be eliminated which makes the
algorithm needs only one field multiplication.

◮ This algorithm requires approximately 29,000 gates in hardware.



Hash Functions

◮ Problem with long messages and for security reasons entire message
should be signed as a single document. To overcome these problem
we use hash functions in digital signatures.

Signature:

◮ z = h(x)

◮ Sigkpr
(z)

Verification:

◮ z = h(x)

◮ Verkpub
(z)



Requirements for Hash Functions

◮ H(x) can be applied to x of any size

◮ H(x) produces a fixed length output

◮ H(x) is a relatively easy to compute in software and hardware

◮ H(x) is one way: for any output z it is impossible to find x such
that H(x) = z

◮ H(x) is weak-collision resistant: given x and H(x), it is impossible
to find a x ′(6= x) such that H(x) = H(x ′)

◮ H(x) is strong-collision resistant: it si impossible to find any
x , x ′(x 6= x) such that H(x) = H(x ′)



Attacks on Digital Signatures Using MD5 Message Digest

◮ MD5 is used in file integrity checking and as message digest in
digital signatures.

◮ MD5 collision is published by Wang et al. It is not secure anymore
to check message(file) integrity, because two colliding files can be
created while the hash is the same.

◮ Two different meaningful files can map to same hash which makes
the digital signatures vulnerable to possible attacks if used.

◮ Signer can sign a message m1 but then the attacker can change the
message m1 with a colliding message m2. So, verifier can verify that
m2 is signed which is actually not true.



Key Collisions in (EC)DSA

◮ Non-repudiation: One cannot deny his signature once signed.

◮ If key collisions occur in signature schemes, then one can verify that
a message m is signed by entity e1 eventhough m is actually signed
by another entity e2, not by e1

◮ Key-collision searching is possible in DSA and ECDSA, there is a
feasible message-independent algorithm for this purpose.(T. Rosa)



References

1. Aravamuthan, S., Rao, V., A Parallelization of ECDSA Resistant to
Simple Power Analysis Attacks, 2006.

2. Möller, B., Rupp, A., Faster Multi-Exponentiation through Caching:
Accelerating (EC)DSA Signature Verification, 2007.

3. Schroeppel, R., Beaver, C.L., Gonzales R., Miller, R., Draelos, T., A
Low-Power Design for an Elliptic Curve Digital Signature Chip, 2002.

4. Rodŕıguez-Henŕıquez, F., Saqib, N. A., D́ıaz-Pèrez, N.A., Koç, Ç.K.,
Cryptographic Algorithms on Reconfigurable Hardware,
Springer-Verlag New York, Inc., 2006.

5. Mikle, O., Practical Attacks on Digital Signatures Using MD5
Message Digest, 2004.

6. Wang, X., Feng, D., Lai, X., Yu, H., Collisions for Hash Functions
MD4, MD5, HAVAL-128 and RIPEMD, 2004.

7. Rosa, T., Key-collisions in (EC)DSA: Attacking Non-repudiation,
2002.


