
1

MD5 and SHA-1 Collision Attacks: A Tutorial

Alan Savage

Abstract— MD5 and SHA-1 are well developed and pop-

ular cryptographic hash functions used for various security

purposes, including password storage and integrity checking.

Both of these algorithms have been shown to be vulnerable

to collisions. In this tutorial, collision attacks for both of

these algorithms will be presented and analyzed. In addi-

tion, the implications of these attacks on the development

of future hash functions will be discussed.

I. Introduction

Hash functions are many-to-one functions designed to
compress some data, known as a message, into a fixed num-
ber of bits, known as a hash or a digest. They are widely
used in many areas for integrity checking, password stor-
age, message signing, SSL, timestamping, random num-
ber generation, and various other cryptographic protocols.
These applications rely on the fact that hashes are a nearly
unique identification of a particular message and that they
are not reversible. In order for the messages to be nearly
unique, hash functions are designed such that it should be
computationally infeasible to find collisions, i.e. two differ-
ent messages that have the same hash value. The act of
searching for collisions for a particular function is known
as a collision attack.

MD5 and SHA-1 are two of the most popular hash func-
tions and are in widespread use. However, MD5 and SHA-
1 are vulnerable to collision attacks based on differential
cryptanalysis. MD5 is completely broken in that collisions
can now be found within a few minutes on modern ma-
chines. SHA-1, while not completely broken, is showing
signs of weakness. That is, the attacks on SHA-1 have
a lower time complexity than a brute force approach. In
this paper, we will briefly overview each of these functions
and then examine the attacks. We will conclude with some
implications of these attacks.

II. A Brief Overview of MD5

MD5 is a hash function, using the Merkle-Damgärd con-
struction, that takes messages of arbitrary length (< 264

bits) and compresses them into a 128-bit hash value[1].
The message M is divided into 512-bit blocks such that
M = (M0,M1, ...,Mn − 1). If the message length is not a
multiple of 512 then it is padded by appending a single 1 bit
followed by enough 0s to bring the length of the message to
64-bits less than a multiple of 512. The final 64-bits are an
integer representing the bit-length of the original message.

The algorithm iterates over 512 bits of the message at
a time, broken down into 16 32-bit messages Mi = m =
(m0,m1, ..,m15). Each iteration has 4 rounds that each
has 16 steps for 64 steps in total. The hash itself is broken
into four 32-bit words and is initialized to the value given
in Table I. Each round operates on four 32-bit words A,
B, C, and D which, at the beginning of each iteration, are

TABLE I

MD5 Initialization Vectors -

H0 = 0x01234567

H1 = 0x89ABCDEF

H2 = 0xFEDCBA98

H3 = 0x76543210

TABLE II

MD5 Round Functions

Round (i) F (X,Y,Z) g

0 (X ∧ Y ) ∨ (¬X ∧ Z) i

1 (X ∧ Z) ∨ (Y ∧ ¬Z) (5 × i + 1) mod 16
2 (X ⊕ Y ⊕ Z) i(3 × i + 5) mod 16
3 (Y ⊕ (X ∨ ¬Z)) (7 × i) mod 16

set component wise to the current value of the hash. Each
round executes according to the following rules:

A = D

B = B + ((A + F (B,C,D) + Ki + mg) <<< Ri)
C = B

D = C

F is a non-linear boolean function, K is a step specific
constant, mg is one word of the message indexed by g, and
finally Ri is a round specific constant that specifies a left
rotation by Ri bits. F and g are shown in Table II and are
round specific. All addition is done mod232. At the end
of each iteration, A,B,C, and D are each added compenent
wise to the hash:

H0 = H0 + A

H1 = H1 + B

H2 = H2 + C

H3 = H3 + D

Figure 1 is a graphical representation of one step of
MD5[2]. The final hash is a concatenation of the four hash
words.

III. MD5 Collision Attack

An MD5 collision attack using differential cryptanalysis
was exposed by Wang in [3]. That required at most 239

MD5 operations to find a collision, and was subsequently
improved by various research groups around the world and
reduced to 229 for the 2nd block by Klima in [4]. Black et
al. give an execellent, in-depth explanation of the attack
in [5]. Here we give a simplified overview of how the attack
is carried out.

The generated collisions consist of two 1024-bit messages
M = (M0,M1) and M ′ = (M ′

0,M
′

1), such that MD5(M) =



2

Fig. 1. One MD5 step

F

A B C D

A B C D

M

K

i

i

<<<s

MD5(M ′). Define:

C0 = (0, 0, 0, 0, 231, 0, 0, 0, 0, 0, 0, 215, 0, 0, 231, 0)
and

C1 = (0, 0, 0, 0, 231, 0, 0, 0, 0, 0, 0,−215, 0, 0, 231, 0)

Let M ′

0 = M0+C0 and M ′

1 = M1+C1, added component
wise and mod232. Let Qi = B for sub-step i in MD5(M)
and Q′

i = B in the ith step of MD5(M ′). Qi − Q′

i is a the
differential for step i.

A set of differentials are given by [3], ai where 0 <= i <

127, such that if Q′

i −Qi = ai for all i, then a collision oc-
curs. This set of differentials is known as the ‘differential
path’. There is a set of conditions on Qi that will ensure
that all the differentials hold true if the conditions are sat-
isfied. The sufficient conditions are conditions on the indi-
vidual bits of the intermediate variables Qi. For example,
the least significant 6 bits of Q8 must be 0, and the most
significant bit of Q16 must be equal to the most significant
bit of Q15. In [3], a set of conditions were given and said to
be sufficient. However, Liang et al. gave counter-examples
for those conditions and provided new conditions that are
believed to be correct and sufficient in [6].

To perform the attack, we satisfy as many conditions on
Qi as possible, starting from Q0, in a more or less deter-
ministic way by intelligently modifying M . After that, we
satisfy the rest of the conditions probabalistically by modi-
fying the unfixed bits of M until all conditions are satisfied
and a collision is found.

Here is the pseudocode from [5].

1: for all Block do

2: collision found = false
3: while collision found is false do

4: Select values Q0:15 arbitrarily
5: Modify Q0:15 to satisfy all first block conditionals

and differentials
6: Compute m0:15fromQ0:15

7: Satisfy all possible second block conditions and dif-

ferentials using multi-message modification meth-
ods

8: Compute all Qi and Q′

i and check if all differentials
hold

9: if all differentials hold then

10: collision found = true
11: end if

12: end while

13: end for

Single message modification is changing M such that all
the conditions for the first round hold. The algorithm is as
follows:

1: for i from 0 to 15 do

2: Change Qi to satisfy conditions
3: mi = ((Qi − Qi−1) >>> si) − Ti − Qi−4 −

F (Qi−1, Qi−2, Qi−3)
4: end for

One of the key points of the attack is multi-message mod-
ification. That is, after all the first round conditions are
satisfied, alter several message blocks to satisfy the second
round conditions while keeping first round conditions satis-
fied. Lets say Q16,31, ie. the most significant bit of sub-step
16 for round two, is 1 and needs to be zero to satisfy its
condition. Because the shift amount for sub-step 16 is 5,
adding 226 to m1 would satify the condition. However, this
would also change Q1. Other message modifications must
be made to absorb that change. The chain of modifications
that must be made is specific to that particular condition.
These modifications seem to be calculated by checking each
change that would be made and working backward to undo
them similar to the single-message modification.

IV. A Brief Overview of SHA-1

SHA-1, like MD5, uses the Merkle-Damgärd construc-
tion, so they are very similar. It hashes a message of an
arbitrary length (< 264 bits) into a 160-bit hash value. The
message is broken into 512-bit blocks each of which is pro-
cessed for 80 rounds. Each round has 160-bits of input
broken down into five 32-bit words, A, B, C, D, and E.
At the beginning of each block the round inputs are given
the current hash value just as in MD5. Table IV gives the
initialization vector for the first round of the first block.
This input undergoes the following computation once each
round:

A = F (B,C,D) + E + (A <<< 5) + Wi + Ki

B = A

C = B <<< 30
D = C

E = D
F is a non-linear boolean function in Table III, Ki is a

round specific constant, Wi is the expanded message word
of round i. Wi is defined as follows:

mi =

{

mi 0 <= i <= 15

(Wi−3 ⊕ Wi−8 ⊕ Wi−14 ⊕ Wi−16) <<< 1 16 <= i <= 79



3

TABLE III

SHA-1 Rounds Functions

Round (i) F (X,Y,Z)
0..19 (X ∧ Y ) ∨ (¬X ∧ Z)
20..39 (X ⊕ Y ⊕ Z)
40..59 (X ∧ Y ) ⊕ (X ∧ Z) ⊕ (Y ∧ Z)
60..79 (X ⊕ Y ⊕ Z)

TABLE IV

SHA-1 Initialization Vector

H0 = 0x67452301

H1 = 0xEFCDAB89

H2 = 0x98BADCFE

H3 = 0x10325476

H4 = 0xC3D2E1F0

At the end of each iteration, A,B,C,D, and E are each
added compenent wise to the hash:
H0 = H0 + A

H1 = H1 + B

H2 = H2 + C

H3 = H3 + D

H4 = H4 + E

The final hash is the concatenation of the five hash
words. Figure 2 shows one round of SHA-1[2].

V. SHA-1 Collision Attack

The first attack on the full SHA-1 with complexity
O(269) was introduced by Wang in [7]. That attack was
further reduced to O(263) in [8] by finding a better colli-
sion path, this was corroborated in [9]. The attack is simi-
lar to the MD5 attack in many ways. It is also a differential
attack, so there is a differential path ai with some condi-
tions on it. The same message modification techniques are
used to satisfy the conditions on the differential path. This
section provides an overview of that attack.

Fig. 2. One SHA-1 step

A B C D E

A B C D E

<<<
5

<<<
30

F

Wt

Kt

Some key ideas in the attack are local collisions and dis-
turbance vectors. A local collision is a collision within a
few steps of the hash function, such that a difference in
some step will be absorbed by the next five steps. The
disturbance vector specifies the starting starting steps for
the local collisions. For SHA-1, there are 80 disturbance
vectors of 32-bits each. The vectors satisfy the recurrence
relationship given by the SHA-1 message expansion in Sec-
tion IV for rounds >= 16. Because of this, once 16 consec-
utive vectors have been chosen the other 64 have also been
determined. In addition, corrections needed by differences
in message bits for a local collision are satisfied by the same
recurrence.

The complexity of the attack is proportional to the Ham-
ming weight of the disturbance vector, so the key to an ef-
ficient attack is to find disturbance vectors with low Ham-
ming weights then construct valid differential paths from
those vectors. To find the disturbance vectors we note that
they can be viewed as an 80 by 32 matrix where each en-
try, indexed i, j is a single bit. If a particular entry is 1
then a local collision is introduced at step i at bit j. Ma-
trices with low hamming weights are likely to to concen-
trate non-zero entries in several consecutive columns. So,
to find the disturbance vectors with low hamming weights
we pick two entries i, j and i, j − 1 as the top of two 16-bit
columns, ie. the columns are (i, j), (i + 1, j), ..., (i + 15, j)
and (i, j − 1), (i + 1, j − 1), ..., (i + 15, j − 1). We then
vary those columns through all 232 possibilities. Using the
above strategy, first search for vectors predicting one-block
collisions then vectors that predict near collisions and two-
block collisions. Finally, compute the minimal Hamming
weight disturbance vectors.

Now, given a disturbance vector with low Hamming
weight, use it to construct a valid differential path. Un-
fortunately [7] is somewhat light on the details of how to
do this construction. The main approach is (1) analyze
the propagation of differences, (2) identify wanted and un-
wanted differences, and (3) use the Boolean function and
the carry effect (given below) to introduce and absorb these
differences. They offer the following high level ideas:

• Use subtraction instead of XOR for difference
• Take advantage of special properties of first boolean func-
tion. It can preserve, flip, or absorb an input difference.
• Take advantage of the carry effect to introduce extra bit
differences: 2j = −2j

− 2j+1
− ... − 2j+k−1 + 2j+k for any

k.
• Use difference message differences for the 6-step local col-
lision
• Introduce extra bit differences to produce the impossi-
ble bit-differences in the consecutive local collisions cor-
responding to the consecutive disturbances in the first 16
steps, or to offset the bit differences of chaining variables
produced by truncated local collisions.

Once a valid differential path is constructed, a set of
sufficient conditions on the message and chaining variable
can be derived. The conditions are defined in the same way



4

the MD5 conditions were defined except instead of using
variable B, in SHA-1 the chaining variable is A. Again,
details of how the conditions are derived are lacking, but
the idea is to find what bits of M and A must be set in every
round and what their differences are from the previous or
next round.

The conditions can be satisfied by using the same mes-
sage modification techniques on M that were used in the
MD5 attack. All of this will generate a near collision on
the first block. Then the second block will begin using the
has of the first block as input. To construct the differential
path for the second message blocks we apply the techniques
previously used so that the input difference is absorbed by
the first 16 rounds of the new differential path. Next, we
set the conditions on the second block of the message so
that the output difference has the opposite sign as the in-
put difference. The differences will cancel out and thus, a
two-block collision is born.

VI. Implications and Conclusion

The collision attack on MD5 has widespread implica-
tions. Many passwords are stored as an MD5 hash and
are now vulnerable to exploitation. MD5 is also used for
integrity checking in security protocols. The fact that colli-
sions are now easily generated means that it can no longer
be reliably used in this way. However, not all applications
require collision resistance. For instance, hashes can be
used for error detection when downloading large files.

Unlike MD5, the SHA-1 attack is still not feasible on
current hardware, so current applications using this algo-
rithm are still safe. However, it is possible and even likely
that the attacks on SHA-1 will improve and hardware will
improve making collision finding feasible. Alternatives to
SHA-1 that are much harder to break exist, such as SHA-
256 and SHA-512. But because these algorithms are in the
same class as SHA-1 they are likely to be vulnerable to
similar techniques. For that reason, NIST is orchestrating
a competition to design a new hash function, SHA-3, to
replace the older standards[10].

References

[1] R. Rivest, “The MD5 Message-Digest Algorithm,” RFC 1321
(Informational), Apr. 1992.

[2] “Wikipedia,” http://en.wikipedia.org.
[3] Xiaoyun Wang and Hongbo Yu, “How to break md5 and other

hash functions,” in EUROCRYPT, Ronald Cramer, Ed. 2005,
vol. 3494 of LNCS, pp. 19–35, Springer.

[4] Vlastimil Klima, “Finding md5 collisions on a notebook pc using
multi-message modifications,” 2005.

[5] John Black, Martin Cochran, and Trevor Highland, “A study
of the md5 attacks: Insights and improvements,” in FSE. 2006,
vol. 4047 of LNCS, pp. 262–277, Springer.

[6] Jie Liang and Xuejia Lai, “Improved collision attack on hash
function md5. cryptology eprint archive,” Tech. Rep., 2005.

[7] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu, “Finding col-
lisions in the full sha-1,” 2005, pp. 17–36, Springer.

[8] Xiaoyun Wang, “Cryptanalysis of sha-1 hash function,” NIST
Cryptographic Hash Workshop, 2005.

[9] Martin Cochran, “Notes on the wang et al. 263 sha-1 differential
path,” Cryptology ePrint Archive, Report 2007/474, 2007, http:
//eprint.iacr.org/.

[10] “Cryptographic hash algorithm competition,” http://csrc.
nist.gov/groups/ST/hash/sha-3/index.html.


