
A Software Implementation of 64-bit Bit slice

Algorithm for AES

Madhu Venugopal
madhu.venugopal@cs.ucsb.edu

Skand S Gupta
skand@cs.ucsb.edu

University of California Santa Barbara



Introduction to AES

• Symmetric encryption and decryption.

• Block cipher, operates on block of 128 bits.

• Three different allowed key sizes: 128 bits, 192 bits or 256 bits.

• Number of rounds depends on key size.

– 128 bit key: 10 rounds, 192 bit key: 12 rounds and 256 bit key: 14
rounds

• Assuming 128 bit keys for the following discussion and our
implementation.

• The AES algorithm operates on a 4x4 matrix of bytes called state. The
state undergoes a series of transformation.

1



AES Rounds

• Substitute Bytes. Substitutes each byte with a value from a look-up
table called Sbox. The Sbox entries are obtained by taking the inverse of

each element in Galois Field, GF (28).

• ShiftRow . Shifts each byte in the row by an offset.

• MixColumn . Multiplies each column by a constant matrix.

• AddRoundKey . Adds the round key which is derived from the initial
key by using a key expansion algorithm.

• Round 1 only consists of AddRoundKey . Round 10 does not include
MixColumn .

2



Case for Bit Slice Implementation of AES on Software

• Most efficient implementations are done on dedicated hardware engines
such as in FPGAs and ASICs.

• Several applications such as networking software, OS modules need fast
encryption but do not have hardware support.

• A naive software implementation is very slow.

• Bit slice algorithm performs N encryptions in parallel on a microprocessor
with N-bit register width, resulting in significant performance boost.

• Bit slice implementation are immune to cache-timing attacks.

3



Bit Slice Implementation of AES

• Bit slice implementations convert the encryption algorithm into a series
of logical bit operations using XOR, AND, OR and NOT logical gates.

• On a N-bit microprocessor, bit slice works on N inputs at a time called,
bundle .

• On a 64-bite machine the bundle would contain 64 consecutive AES
input blocks with each block occupying 2 words.

• The bundle is arranged so that the first bit of each input is present in
the first word, the second bit on each input is present in the second word
and so on.

• The re-arranged bundle is encrypted.

4



Bit Slice Implementation of AES

• All the encryption rounds are performed on the re-arranged bundle.

• The SBox table look-up used in SubstituteByte is replaced with logical
equations derived using composite field arithmetic.

• The final encrypted bundle is re-arranged at the end of encryption.

5



Bit Slice Implementation of AES - Input Bundle

• Bundle stored in memory for 64-bit processor

b063 .. b04 b03 b02 b01 b00
b0127 .. b068 b067 b066 b065 b064
b163 .. b14 b13 b12 b11 b10
b1127 .. b168 b167 b166 b165 b164
.. .. .. .. .. .. ..
.. .. .. .. .. .. ..
.. .. .. .. .. .. ..
.. .. .. .. .. .. ..
.. .. .. .. .. .. ..
.. .. .. .. .. .. ..
b6363 .. b634 b633 b632 b631 b630
b63127 .. b6368 b6367 b6366 b6365 b6364

6



Bit Slice Implementation of AES - Input Bundle

• Rearranged bundle for 64-bit processor

b630 .. b40 b30 b20 b10 b00
b631 .. b41 b31 b21 b11 b01
b632 .. b42 b32 b22 b12 b02
b633 .. b43 b33 b23 b13 b03
.. .. .. .. .. .. ..
.. .. .. .. .. .. ..
.. .. .. .. .. .. ..
.. .. .. .. .. .. ..
.. .. .. .. .. .. ..
.. .. .. .. .. .. ..
b63126 .. b4126 b3126 b2126 b1126 b0126
b63127 .. b4127 b3127 b2127 b1127 b0127

7



Bit Slice - Our Implementation

• Based on the algorithms described in [2] and [1]

• Operating Environment: Open Suse 64-bit.

• Hardware: Intel x86 - 32 bit.

• 64-bit emulation via Vmware.

8



Bit Slice Implementation - Arranging the bundle

• The mth bit from the word n is placed in the word n in the nth bit of
word m.

• The re-arrangement needs to be efficient.

• We use the Transpose algorithm described in [2]

• Complexity of the algorithm is Θ((n/2)log2n).

• The bundle is stored in a 128x64 bit matrix.

9



Bit Slice Implementation - Arranging the bundle

• The rearrangement requires that the bit m of an even row n be placed
at the position n/2 of row m.

• If n is odd, the mth bit of row n should be placed at the position
(n − 1)/2 of row (63 + m).

• The transpose of of all odd rows and even rows are calculated and the
rows are re-arranged to put the bundle in the required form.

10



Bit Slice Implementation of AES - Substitute Bytes

• The SBox table look-up is replaced with direct calculation of SBox using
the sub-field arithmetic as described in [1]

• 2 main sub-steps in SubstituteByte function:

– Inverse. Let c = a-1, the multiplicative inverse in GF (28).
– Affine transformation. Then the output is s = Mc ⊕ b, where M is a

specified 8x8 matrix of bits, b is a specified byte and the bytes c, b, s,
are treated as vector of bits.

• Direct calculation of inverse (modulo an eighth-degree polynomial) of a
seventh-degree polynomial is not easy. But calculation of the inverse
(modulo a second-degree polynomial) of a first-degree polynomial is
relatively easy.

11



Bit Slice Implementation of AES - Substitute Bytes

• Isomorphism between GF (28)and GF (28)/GF (24)to represent a general

element g of GF (28)as a polynomial over GF (24)can be used.

• GF (24)/GF (22)can similarly be use to represent GF (24).

• GF (22)/GF (2)is then used to represent GF (22)as linear polynomials
over GF (2).

• So finding an inverse in GF (28)can be broken down to inverse in GF (24),

which in turn can be broken down into GF (22)and finally GF (2).

12



Bit Slice Implementation of AES - Substitute Bytes

• The state of AES engine after SubstituteByte operation can be
represented as:

S00(B00 − B07) S04(B32 − B39) S08(B64 − B71) S12(B96 − B103)

S01(B08 − B15) S05(B40 − B47) S09(B72 − B79) S13(B104 − B111)

S02 (B16 − B23) S06(B48 − B55) S10(B80 − B87) S14(B112 − B119)

S03 (B24 − B31) S07(B56 − B63) S11(B88 − B95) S15(B120 − B127)

• Each element Sn consists of 8 words, B8n to B8n+7.

• Each word is of N bits representing the N encryptions taking place in
parallel.

13



Shift Row and Mix Column

• The ShiftRow operation shifts the second row left by eight bits, the third
row by sixteen bits and fourth row by twenty four bits as shown below:

S00(B00 − B07) S04(B32 − B39) S08(B64 − B71) S12(B96 − B103)

S05(B40 − B47) S09(B72 − B79) S13(B104 − B111) S01(B08 − B15)

S02(B80 − B87) S14(B112 − B119) S02(B16 − B23) S06(B48 − B55)

S03(B120 − B127) S03(B24 − B31) S07(B56 − B63) S11(B88 − B95)

• MixColumn is essentially multiplication of each column of the matrix
with a permutation of [2 3 1 1]

• For example MixColumn output for the first byte is given by:

S’
00 = 2S00 + 3S05 + S10 + S15

14



Bit Slice Implementation of AES - Key Schedule

• The round keys also need to go through the same transformation as the
input bundle .

• Each round key is repeated 64 times.

• Same transpose is applied to round keys as the input bundle .

• The AddRoundKey adds each word in the bundle with the corresponding
word in the key bundle .

15



Evaluation

• We compare the number of clock ticks required to encrypt 128 bundles
in our implementation vs OpenSSL AES implementation. As baseline we
compare against the encryption times in [2] for 64-bit size bundle on a
Core 2. We refer to this implementation as RSD (for author’s initials).

• The OpenSSL implementation is a 32 bit software implementation of
AES. Note that this implementation is optimized for 32 bit environment
and should perform well on our test environment. Hence it provides a
good reference implementation to compare with.

16



Evaluation

Table 1: The Test Environment
Operating System Open Suse 64-bit

Microprocessor Intel Core 2 duo (64 bit emulation using Vmware)

Core Speed 2.0 GHz

Memory 512 Mb

Compiler gcc-4.3.1

Input bundle 64-bits

Key Size 128-bits

Table 2: Encryption Times
Our Implementation OpenSSL AES RSD Bit Slice

Clock ticks for 128 bundles 47400 39000 -

Clock ticks per bundle 370 304 302

17



Conclusion

• Our implementation does almost as good as RSD implementation even
though we run tests over Vmware and with only 512 Kb of memory (RSD
uses 4Gb of memory).

• The OpenSSL AES does better, presumably because it is a 32 bit
implementation and the underlying hardware in our test environment is
32 bit as well.

18



References

References

[1] Canright D. A Very Compact Rijndael S-box. Montrery, CA, 2004.

[2] Devi A.S.L Rebeiro Chester, Selvakumar David. Bitslice Implementation

of AES. Springer Berlin, 2006.

19


