
1

Secure digital signature using RSA
Wendy H. Chun

Department of Computer Science,
University of California, Santa Barbara, CA 93106

Email: chun0216@cs.ucsb.edu
June 9, 2010

Abstract—As the Internet became part of our lives, we use
Internet to make our lives convenient. For example, now,
we tend to send an electronic mail instead of hand-written
mail due to the speed and convenience. However, when we
receive an electronic mail, how can we verify that whether it
is sent by right person or not? As a result, everyday, we live
in the insecure world where our identities are used by other
people without even acknowledged about that. In order to
prevent this, digital signature is a cryptographic scheme that
is used to reinforce the security by authentication. In digital
signature, there are many cryptographic algorithms, such as
RSA, Elliptic curve, and ElGamal, are used for signing and
verifying. In this paper, we will cover the whole process of
the digital signature authentication using RSA, that is one
of the oldest public key systems algorithm.

I. Introduction

Digital signature is similar as the hand-written signa-
ture that we put for verification everyday. Sender sends
a data with digital signature and when recipient receives
it, the recipient verifies the sender by the digital signature
that is sent it with the message. Digital signature can be
created by many different cryptographic algorithms, such
as Elliptical Curve, ElGamal, or other public-key cryptog-
raphy techniques, but in this paper, we will create it by
applying the oldest methods, RSA. Before we talk about
the RSA algorithm, digital signature scheme is first de-
scribed by Whitfield Diffie and Martin Hellman in 1976
using Diffie-Hellman algorithm [1]. However, it was not
a strong algorithm because all it does is key exchange so
soon after the Diffie-Hellman algorithm, RSA algorithm is
invented by Ronald Rivest, Adi Shamir, and Len Adleman,
which does not only key exchange but also encryption and
decryption, and till now, the algorithm is popularly used
for digital signature, even if there are other public-key cryp-
tography techniques available.
In this paper, at first, in section II, we will talk about

hash functions to create a message digestion and in section
III and IV, we will talk about standard RSA algorithm for
encryption and decryption. After that, in section V, we
will talk about the problem of digital signature created by
standard RSA algorithm and also solution in order to make
more secure.

II. Message Digestion

When we look at the length of actual hand-written sig-
nature, it is fairly short because the purpose of signature is
for quick verification. Similarly in cryptography, we want
to keep the digital signature as short but yet important
as possible and using a message digestion algorithm, we

can reduce the message input into fixed length of pseudo-
random output [2]. In order to create a message digestion,
we need to apply one of the hash functions to the mes-
sage and MD2, MD5, and SHA-1 are hash functions that
are popularly used in nowadays. Because SHA-1 is known
to be the most frequently used function because there are
several problems in MD2 and MD5 such as speed, collision,
and insecureness [3], we will use SHA-1 algorithm in this
paper to generate a message digestion. Table 1 shows the
comparison of speed by different hash functions [4].

Table 1: Parameter for special hash function.

hash function block length relative speed
MD4 128 1.00
MD5 128 0.68

RIPEMD-128 128 0.39
SHA-1 160 0.28

RIPEMD-160 160 0.24

A. Secure Hash Algorithm

In this section, we will show how using SHA-1 algorithm
can make the message into fixed short length message.
First, we have a message M that has a length at most
264 − 1 and we append this with 1, that is M ′ ← M ◦ 1.
Then we append M ′ with minimum number of zeros to
make the length of M ′ becomes multiple of 448 that is,
|M ′| = k × 512 − 64. After that, we add another 64 bits
of extended original message M using big-endian and thus,
the final length of M ′ will become multiple of 512. Af-
ter running the M ′ through SHA-1 algorithm, we get the
value of H0, H1, H2, H3, and H4 in which each value is
32 bit words and finally, at the end, we concatenate those
five hash values, SHA1(x) = H0H1H2H3H4, which results
160 bits long. Because SHA-1 returns 160 bits long string
regardless of the length of original message we use, this
shows that our message of digestion is always going to be
160 bits long, which is pretty short.

III. Key generation

Before we encrypt the message, we also need to create
keys that we are going to use. First, we pick two odd
prime numbers for p and q that are randomly chosen, then
we assign n as the product of those two numbers, n = p×q.
Using this n, a public key exponent is chosen in 1 < e <
φ(n) range. φ(n) is an Euler function and according to the
theorem in [4], if n is a prime number then φ(n) = n− 1.
Using this theorem, we can compute φ(n) as φ(n) = φ(p×

2

q) = φ(p) × φ(q) = (p − 1) × (q − 1). Thus, public key
exponent e can be chosen between 1 < e < (p−1)× (q−1)
and also satisfy gcd(e, φ(n)) = 1 condition. After that,
we choose the private key exponent d using same range,
1 < d < (p− 1)× (q− 1) and also satisfy d× e ≡ 1mod(p−
1) × (q − 1) condition. In this case, because we already
know all other values, e, p, and q, we can easily compute d
using Extended euclidean algorithm [4].

IV. Sign and verification

After creating a message digestion and keys, we use stan-
dard RSA algorithm to create signature and later to verify
the signature [5]. First, let encryption and decryption func-
tions as:

s(m) = md mod n
m(s) = se mod n

The signing process is very simple by using d, sender’s pri-
vate key, as an exponent to the message digestion. Then
we attach this signature s with original message m and
send it. During verification proces, when recipient receives
the message and the signature, he or she first uses sender’s
public key to the signature and get the message, say M ′.
Because M ′ is created by hash function SHA-1 and it is
infeasible to invert it back to M , the recipient should ap-
ply hash function to the original message M instead and
then compare that with M ′ we got. In other words, if M ′

and H(M) is the same, the signature is successfully veri-
fied; otherwise, not. The figure below shows the process of
signing and verification.

Figure 1: Signing and verification process

V. Problem and solution

Suppose that we have a low public key exponent e, for
example when e = 3, and small m, the message can be
easily breakable in polynomial time by taking eth root be-
cause RSA algorithm is a deterministic encryption algo-
rithm in which there are no such random components [6].

In order to prevent this flaw, we use encryption padding
schemes to increase the size of message so that it is hard to
break, and/or also signature scheme to improve probabilis-
tic signature. As a result of using these schemes, it makes
the RSA algorithm not only becomes more secure but also
makes deterministic to probabilistic scheme [7]. Here are
two schemes we can apply to create a stronger signature.

A. Optimal Asymmetric Encryption Padding

Using an OAEP, Optimal Asymmetric Encryption
Padding, we first convert m into padded m and then use it
in normal signing equation, s = (mpadded)

d mod n. OAEP
is based on Feistel network [8] to randomize ciphertext in
certain public-key encryption scheme. First, we choose two
integers, k0 and k1 and also let the length of message as n.
According to the definition, the length of M , the length of
plaintext, should be |M | = n− |k0| − |k1|. We also choose
two random hash functions called G and H, that is:

G : {0, 1}k0 → {0, 1}n−k0

H : {0, 1}n−k0 → {0, 1}k0

After this setup, we run OAEP algorithm to pad the mes-
sage M so that we can generate stronger signature.
OAEP Algorithm
Input: M , k0 and k1, where k0, k1 ∈ N
Output: Mpadded

1: r := {0, 1}k0

2: G(r) := r → {0, 1}n−k0

3: s := G(r)⊕ (m||{0, 1}k1)
4: H(s) := s→ {0, 1}k0

5: t := H(s)⊕ r
6: Mpadded := (s||t)
7: return Mpadded

Figure 2: OAEP Scheme

Using this padded message, Mpadded, we use RSA signing
equation s = (Mpadded)

e mod n to create a signature.

B. Probabilistic Signature Scheme

PSS, Probabilistic Signature Scheme, is also another
scheme that is intended to be both efficient and provably
secure [9]. Unlike standard RSA and OAEP algorithms,

3

we can create a digital signature using PSS algorithm’s
signature equation. Same as OAEP, PSS also pad the mes-
sage using two random padding variable. However, unlike
OAEP, PSS algorithm returns EM value instead, but by
using PSS signature equation, s = EMd mod n equation,
we can find a signature. At first, we create aM ′ by concate-
nating fixed padding, padding1, H(M) and salt, which is
a randomly generated octet string [10]. Then we pass this
value M ′ into hash function again, H(M ′) and then put
into G function to make same length as DB, which is con-
catenation of another padding, padding2 string and salt
value that we got. After we pass H(M ′) into G function,
we XOR the value with DB and let it equal to maskedDB
where maskedDB = G(H(M ′)) ⊕ DB. At the end, we
make EM by concatenating 0, maskedDB, H(M ′), and
another padding called TD, trailer field, which consists of
single octet [10]. Since we know that s = EMd mod n
which is equal to s = (EM)Md−1 mod n, we can finally
generate a s from EM value that we got.

Figure 3: PSS Scheme

The advantages of both OAEP and PSS scheme are that
at first, we pad message M with random number(s) and
it makes the message more vary and hard to guess for at-
tackers. Also by using hash functions, which is one-way
function, it makes message more difficult to invert or in
other words, it makes the message becomes more random
or probabilistic.

VI. Conclusion

Using a digital signature scheme, we can authenticate
the sender’s identity and assure the recipient. Despite of
the fact that RSA is an old algorithm among other public-
key techniques, by using schemes that are mentioned in
PKCS #1 [11], we can make it much stronger by random-
izing through padding. For example in RSA-PSS, we use
hash function almost three times and because of the fact
that hash function is infeasible to solve in the other way,
it makes message hard to break. But although using these
schemes in PKCS #1 would make signature stronger, there
are some disadvantages we can find. First, even though
we use PKCS #1 schemes to make the signature much
stronger, because our signature is going to be in 160 bits, it
is still somewhat weak compare with encrypting the whole
message. Another disadvantage is that because RSA is

much slower than other symmetric cryptosystems in gen-
eral [12], doing this whole digital signature process is going
to be really slow and perhaps the next or future work for
the RSA digital signature is going to be, rather than mak-
ing the algorithm more secure, make the algorithm more
efficiently in fast speed.

References

[1] J. G. Savard, “Digital signature based on diffie-hellman,” http:
//www.quadibloc.com/crypto/pk050302.htm, June 2010.

[2] S. Burnett and S. Paine, RSA Security’s Official Guide to Cryp-
tography, McGraw-Hill, 2001.

[3] E. Abdel-Azeem, R. Seireg, and S. I. Shaheen, “Cryptographic
security evaluation of md4 hash function,” in Radio Science
Conference, 1996. NRSC ’96., Thirteenth National, mar 1996,
pp. 345 –354.

[4] J. A. Buchmann, Introduction to Cryptography, Springer, 2004.
[5] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtain-

ing digital signatures and public-key cryptosystems,” Commun.
ACM, vol. 21, no. 2, pp. 120–126, 1978.

[6] M. C. Chu-Carroll, “Cryptographic padding in
RSA,” http://scienceblogs.com/goodmath/2009/01/
cryptographic padding in rsa.php, June 2010.

[7] “Optimal asymmetric encryption padding,” http:
//en.wikipedia.org/wiki/Optimal Asymmetric Encryption
Padding, June 2010.

[8] S. AlZaabi, S. Baniabdalsalam, and M. Baniabdalsalam, “Sym-
metric encryption,” 2008.

[9] A. Menezes, “Evaluation of security level of cryptography: RSA-
OAEP, RSA-PSS, RSA signature,” Tech. Rep., University of
Waterloo, 2001.

[10] B. Kaliski, “Raising the standard for RSA signatures: RSA-
PSS,” Tech. Rep.

[11] “PKCS #1 v2.1: RSA cryptography standard,” Tech. Rep.,
RSA Laboratories, 2002.

[12] “RSA,” http://en.wikipedia.org/wiki/RSA#Speed, June 2010.

