
1

Digital Signature Algorithm Implementations

Leah Chatkeonopadol Smruthi Manjunath

6951651 3952009

Abstract—In this project, we implement DSA and ECDSA in
Python to compare their performances. Specifically, we examine
timings for signature generation and verification. For ECDSA,
we also perform and analyze point multiplication in four dif-
ferent coordinate systems: affine, projective Jacobian, projective
standard, and modified Jacobian.

I. INTRODUCTION

The Digital Signature Algorithm (DSA) is a commonly

used variant of El Gamal, one of the cryptographic signature

schemes. In addition to the standard DSA, there exists an

elliptic curve version, ECDSA. We implemented both DSA

and ECDSA to explore the differences between these two

algorithms in terms of timing and complexity [1].

The most notable difference between DSA and ECDSA is

the fact that DSA requires larger parameters to provide the

same level of security as ECDSA. For example, an ECDSA

signature based on a 192-bit elliptic curve is as secure as

a 1024-bit DSA signature. In turn, this means that ECDSA

needs less memory for computation and hence is preferable

for environments with limited memory, such as embedded

systems. ECDSA also scales more efficiently than DSA in

terms of security level.

The rest of this paper covers some background details and

our implementation approach. Then we conclude with the

results of our work.

II. BACKGROUND

DSA includes a specific hash function, SHA-1, which takes

the message to be sent and computes a 160-bit message digest.

As shown in Figure 1, this message digest is used along with

the private key to produce the signature. At the other end, the

message is also hashed and used with the received signature

and the public key to verify the signature [2].

DSA and ECDSA are extremely similar except that their

parameters and main operation differ. In particular, DSA uses

modular exponentiation, whereas ECDSA uses scalar point

multiplication on an elliptic curve.

III. IMPLEMENTATION

Our implementations were done in Python running on a 2.4

GHz Intel Core 2 Duo. First we implemented DSA (parameters

from [3]) using the binary method for modular exponentiation.

Then we implemented ECDSA (parameters from [4]) using

an NAF recoding of the exponent into balanced ternary and

Authors are with the Department of Computer Science,
University of California, Santa Barbara, CA 93106. E-mail:
{chatkeon,smanjunath}@cs.ucsb.edu

Fig. 1: Signature generation and verification

the corresponding modified binary method. For the elliptic

curve computations, we used the approved NIST curve P-224

[5]. The extended Euclidean algorithm for finding modular

inverses was used in both cases.

ECDSA was implemented in four different coordinate sys-

tems [6]. These are given in Table 1.

Coordinate System Coordinates Conversion to Affine

Affine x, y N/A

Projective Jacobian X , Y , Z x = X/Z2, y = Y/Z3

Projective Standard X , Y , Z x = X/Z , y = Y/Z

Modified Jacobian X , Y , Z , T x = X/Z2, y = Y/Z3, (T = aZ4)

TABLE I: Coordinate Systems

IV. RESULTS

The timings for signature generation and verification, aver-

aged over 100 executions, are shown in Figure 2. These times

do not include the time needed for message hashing. The time

for signature verification is approximately twice as large as

the time for signature generation. This is as expected, since

DSA is known to be faster than RSA at signature generation,

but slower at signature verification.

Affine coordinates clearly require more time than the other

coordinate systems, as well as DSA, due to the significantly

greater number of computations needed.

Figure 3 displays the average time per single operation

for addition, subtraction, doubling, and inversion in each

of the different coordinate systems. Naturally, addition and

subtraction take roughly the same amount of time, while

inversion is generally more expensive. Again, affine is much

slower than the rest.

The number of operations these timings were averaged over

are given in the table below (these are the numbers resulting



2

Fig. 2: Timings for signature generation and verification

Fig. 3: Timings for various operations

from a single point multiplication for a specific value of k [4]).

Addition, subtraction, and doubling were performed the same

number of times in all four versions of ECDSA, but affine

involved a much larger number of inversions.

Coord. System Addition Subtraction Doubling Inversion Total

DSA 77 0 158 0 235

Affine 94 113 671 878 1756

Proj. Jacobian 94 113 671 6 884

Proj. Standard 94 113 671 3 881

Mod. Jacobian 94 113 671 3 881

TABLE II: Operation Counts for Different Coordinate Systems
(and DSA)

The operation counts for DSA are from an equivalent

modular exponentiation with the same value of k [4].

V. CONCLUSION

From our implementations, we conclude that projective

Jacobian is more efficient than the other three coordinate

systems, but projective Jacobian, projective standard, and mod-

ified Jacobian are all comparable. Affine is the least efficient.

We also note that implementation details have a large effect

on performance. For example, switching from Fermat’s little

theorem to the extended Euclidean algorithm gave a significant

performance boost. Similarly, altering the division by 2 in

projective Jacobian coordinates made it faster than the other

coordinate systems. Finally, we believe that Python might

optimize modulation. This would explain our varied results.

REFERENCES

[1] https://en.wikipedia.org/wiki/Digital Signature Algorithm
[2] http://www.itl.nist.gov/fipspubs/fip180-1.htm
[3] http://csrc.nist.gov/groups/ST/toolkit/documents/dss/Examples-

1024bit.pdf
[4] http://tools.ietf.org/html/draft-pornin-deterministic-dsa-01#appendix-

A.2.4
[5] http://csrc.nist.gov/publications/fips/fips186-3/fips 186-3.pdf
[6] http://www.hyperelliptic.org/EFD/


