
Secure Peer-to-Peer Chatting on iOS
Johan Henkens and Shayan Yassami
{jhenkens,syassami} at cs.ucsb.edu

1 Objective-C Elliptic Curve

Library

We created an Objective-C framework that can
be built both for use as a Framework within Mac
OS X apps, as well as a static library used in iOS
apps. The framework uses the BIGNUM class within
the OpenSSL1 library. The BIGNUM class provides
all of the necessary modular arithmetic operations,
as well as cryptographically sound random number
generation for large integers. Within the library, a
class is exposed to initialize a NIST D.1.2.1 192-
bit curve [1]. Further, we have implemented elliptic
point addition using the Jacobian projective coordi-
nate system, and point multiplication using the bi-
nary method with the canonical recoding algorithm
discussed in [2]. The library allows one to easily
generate a private key, request a public point, and
compute a shared secret based on a private key and
an public point, thus providing all the steps neces-
sary to perform an ECDH exchange.

OpenSSL by default seeds its random number gen-
erators from /dev/random. The library allows us to
manually pass in a seed to the OpenSSL PRNG if de-
sired, which we do in the iPhone app. We call iOS’s
SecRandomCopyBytes function2 which gives us cryp-
tographically strong random data to seed OpenSSLs
PRNG with.

2 Symmetric Encryption

For chose to use RNCryptor 3, made by Rob
Napier as our secure encryption scheme due to ease
of use and methodology for encryption practices.
RNCryptor is a scheme based around Advanced En-

1http://www.openssl.org
2http://developer.apple.com/library/

ios/#documentation/Security/Reference/

RandomizationReference/Reference/reference.html
3https://github.com/rnapier/RNCryptor

cryption Standard(AES). Chosen to replace Data
Encryption Standard(DES), AES provides stronger
cryptography with a keylength of 128, 192, or 256
bits. For this project we chose to use the maximum
keylength of 256 bits. To achieve this length given
our shared secret of 192 bits, we needed to extend the
length of the key by 256−192 = 64 bits. Although a
192 bit ECDH password is considered secure, chose
the maximal strength due to the availability of the
iPhone’s A9 processor.

2.1 Password Based Key Derivation
Function

To extend our shared secret to 256 bits we
used the standardized Password Based Key Deriva-
tion Function v.2.(PBDKF2) Our Implementa-
tion uses DK = PBKDF2(HMAC?SHA1, passphrase,

Salt, 10000, 256)

Algorithm 1 PBKDF2

DK = PBKDF2(PRF, Password, Salt, c, dkLen)
. %PRF is

a pseudorandom function of two parameters with
output length hLen (e.g. a keyed HMAC) %
. %Password is the master password from which
a derived key is generated%

. %Salt is a cryptographic salt%
. %c is the number of iterations desired%

. %dkLen is the desired length of the derived
key%
DK = T1||T2||...||Tdklen/hlen
T i = F (Password, Salt, Iterations, i)
F (Password, Salt, Iterations, i) = U1U2U3Uc
U1 = PRF (Password, Salt||INTmsb(i))
U2 = PRF (Password, U1)
Uc = PRF (Password, Uc− 1)

1



2.2 Advanced Encryption Standard
We chose to use AES Cipher Block Chain-

ing(CBC) Mode. Each block of plaintext is XOR’ed
with the previous ciphertext block pre-encryption.
This means that each ciphertext block depends on
the previous plaintext block. To initialize this pro-
cess we use an Initialization Vector(IV) of length 16
bytes. Our scheme also uses encrypt-then-mac, do-
ing encryption then message based authentication.

2.3 Parameters
AES_ALGORITHM = "AES/CBC/PKCS5Padding";

HMAC_ALGORITHM = "HmacSHA256";

AES_NAME = "AES";

KEY_DERIV_ALGORITHM = "PBKDF2WithHmacSHA1";

PBKDF_ITERATIONS = 10000;

VERSION = 2;

AES_256_KEY_SIZE = 256 / 8;

AES_BLOCK_SIZE = 16;

Table 1: Data Packet Format

Item Byte
Length

Description

Version 1 Data format version.
Always 0x02.

Options 1 Options. 0x01 indi-
cates a password was
used.

Encryption
Salt

8 Salt value used to de-
rive the encryption key.
Only present if a pass-
word was used.

HMAC
Salt

8 Salt value used to de-
rive the HMAC key.
Only present if a pass-
word was used.

IV 16 Random IV
Ciphertext n x 16 Encrypted with 256-bit

AES, CBC-mode with
PKCS #5 padding.

HMAC 32 HMAC calculated with
SHA-256.

3 iOS User Interface
The interface for the app is constructed of two sep-
arate UIViews within a UINavigationController.
The first view, ConnectViewController presents
the user with a single connect button, which,
when pressed displays a GKPeerPickerController,

a class within the iOS GameKit framework
used to connect to Bluetooth peers. Using the
GKPeerPickerController, the user is able to see
other phones running CS290GChat who are also
currently looking for peers. Once a Bluetooth
connection is established, the ECDH handshake
is performed, and upon completion, a segue is per-
formed to the second view, ChatViewController.
This view is a subclass of the
MessagesTableViewController4, which estab-
lishes a standard iOS chat messaging interface.
The messages sent and received from this in-
terface are encrypted using the previously men-
tioned methods of the RNCryptor library. The
MessagesTableViewController is simply an
ease and aesthetic wrapper around a stock iOS
UITableView, which is used to display the messages
in a table. The ChatViewController implements
the interfaces JSMessagesViewDelegate and
JSMessagesViewDataSource in order to provide
the send message hook, and the table data sources
to the MessagesTableViewController.

4 iOS Bluetooth Connectivity
As previously mentioned, the GameKit session
is used to connect to Bluetooth peers using the
GKPeerPickerController. In order to establish
and communicate over a Bluetooth connection using
the GKPeerPickerController, a class must be
implement the GKPeerPickerControllerDelegate

interface, and assigned as the delegate, which
provides methods for handling newly created
GKSessions, which are the Bluetooth sessions. Ad-
ditionally, in order to control the changing of states
for an existing GKSession, there must be a class
that implements the GKSessionDelegate. Lastly, a
class must implement the method receieveData5 in
order to handle receieved data from the Bluetooth
connection.
ConnectViewController implements both
of these interfaces, and the receieveData

method. ChatViewController only im-
plements the GKSessionDelegate interface,
and the receieveData method. As the

4https://github.com/jessesquires/

MessagesTableViewController
5http://developer.apple.com/library/ios/

#documentation/GameKit/Reference/GKSession_Class/

Reference/Reference.html

2



ConnectViewController is responsible for es-
tablishing new connections, it must be able to
handle the creation of new sessions. Further,
as the ConnectViewController handles the
ECDH key exchange before segueing to the
ChatViewController, it must be able to handle
session state changes, as well as the receiving of
data from the peer during the key setup. The
ChatViewController is only used to handle a single
connection, and thus only needs to handle state
changes from the corresponding GKSession as well
a receiving data.
The iOS GameKit framework has reliability built
into its Bluetooth transmission, ensuring delivery
provided no error is returned. Further, the frame-
work also provides connection timeout information
to our client.

References

[1] National Institute of Standards and Technology.
FIPS PUB 186-3. http://cs.ucsb.edu/~koc/

ac/docs/w03/fips_186-3.pdf

[2] Koc, Cetin Kaya. High-Speed RSA Implemen-
tation. http://cs.ucsb.edu/~koc/ac/docs/

w01/r01rsasw.pdf

3


