Pre-Silicon Power Analysis of Cryptographic Hardware

Nicole Lesperance

Power Side Channel Attacks

Simple Power Analysis: Examine a single power trace to determine key bits

- Need model correlating key bits with power **Differential Power Analysis:**
- Divide samples into 2 groups (high and low power) using an "oracle"
- Oracle uses power model to estimate power consumption from predicted value B
- B must depend on key and ciphertext (or plaintext)

Differential Power Analysis: DES Example

If the attacker knows the ciphertext value (C), it is possible to enumerate all possible values for 6 bits of K16 (Ki) and predict the value of a bit in L15 (L)

DES Attack Cont.

- Take many power measurements of different messages encrypted using same key: S[0.. 999][0..9999]
- Define a key dependent selection function:
 L = D(ki, C) where Ki = 0..63
- 3. For each of the 64 possible Ki values and each of the 1000 encryptions, predict L.

Des Attack Cont.

Correct hypothesis is the one where bins L0 and L1 differ the most

DES Power Trace

Figure 4: DPA traces, one correct and two incorrect, with power reference.

Paul Kocher, Joshua Jaffe, and Benjamin Jun, "Differential Power Analysis", in **CRYPTO '99 Proceedings of the 19th Annual International Cryptology Conference on Advances in Cryptology**, Pages 388-397

Goals

- 1. Identify if an implementation is susceptible to simple or differential power analysis before chip is manufactured
- 2. Determine efficacy of countermeasures
- 3. Develop a metric comparing different power analysis countermeasures

CMOS Power

1. Static Power

 Subthreshold leakage of "off transistor" (transistor width, Vdd, Vth)

2. Dynamic Power

- Capacitive ($P_{dyn} = C_L V_{dd}^2 f$)
- Short Circuit (Temp, C_L, slopes of V_{in} and V_{out})

Power Models

- Instruction Level: # of instructions executed
- **RT Level:** Toggle Count, Hamming Weight of data in registers
- Transistor Level: Take net capacitances into account

Figure 2. Interconnect capacitance decomposition.

Countermeasures

Goal: Reduce correlation between intermediate results and power consumption

- Algorithmic countermeasures
- Data masking
- Gate level masking
- Place and route techniques

Hardware Design Flow

Project Goal

 Use EDA power estimation tools to analyze power consumption of a cryptographic hardware implementation

Synopsys Ecosystem

- VCS (Verilog Simulator)
- **Design Compiler** (Synthesis)
- IC Compiler (Place and Route)
- Prime Time PX (Power Analysis)

Figure 1: ECE5950 Toolflow

4-bit LFSR

Verilog RTL

Verilog Gate Level

module lfsr (clk, seed, load en, q);

```
module lfsr
(
    clk,
    seed,
    load en,
    q
);
input clk, load en;
input [3:0] seed;
output [3:0] q;
reg [3:0] q;
always @ (posedge clk)
begin
    if (load en)
        q \leq seed;
    else
    begin
        q[2:0] <= q[3:1];
        q[3] <= q[0] ^ q[1];
    end
end
endmodule
```

```
input [3:0] seed;
 output [3:0] q;
 input clk, load en;
 wire N7, n3, n4;
 SDFF X1 q reg 0 ( .D(q[1]), .SI(seed[0]), .SE(load en), .CK(clk), .\Phi
(q[0])
        );
 DFF X1 q reg 3 ( .D(N7), .CK(clk), .Q(q[3]) );
 SDFF X1 q reg 2 (.D(q[3]), .SI(seed[2]), .SE(load en), .CK(clk), .\phi
(q[2])
        );
 SDFF X1 q reg 1 ( .D(q[2]), .SI(seed[1]), .SE(load en), .CK(clk), .Q
(q[1])
        );
 XNOR2 X1 U6 ( .A(q[0]), .B(q[1]), .ZN(n4) );
 NAND2 X1 U7 ( .A1(load en), .A2(seed[3]), .ZN(n3) );
 OAI21 X1 U8 ( .B1(n4), .B2(load en), .A(n3), .ZN(N7) );
endmodule
```


LFSR Simulation (Gate Level)

4-bit LFSR: PrimeTime time based power analysis

Elliptic Curve Processor

High Performance Elliptic Curve Crypto-Processor for FPGA Platforms, Chester Rebeiro and Debdeep Mukhopadhyay, 12th IEEE VLSI Design and Test Symposium, Bangalore, July 2008.

The Curve

D.1.3.2.2 Curve B-233 (FIPS pg. 93), GF(2²³³)

n = 69017463467905637874347558622770255558398127373450 13555379383634485463

Polynomial Basis:

* b = 066 647ede6c 332c7f8c 0923bb58 213b333b 20e9ce42 81fe115f 7d8f90ad

* Gx = 0fa c9dfcbac 8313bb21 39f1bb75 5fef65bc 391f8b36 f8f8eb73 71fd558b

* Gy = 100 6a08a419 03350678 e58528be bf8a0bef f867a7ca 36716f7e 01f81052

Design Statistics

- **Target clock period:** 100ns (f = 10MHz)
- Area: 65.1% Registers, 34.3% ALU, <1% everything else
- Global Operating Voltage = 1.1V
- **Power consumption:** 65% ALU, 34% Registers

Asymmetric Crypto: Key dependent control flow

One way function: a ^ e mod n

- . Time consuming to compute a [^] e
- . How many multiplications to compute M^15?
- M -> M^2 -> M^3 -> M^4 ... -> M^15 OR -
- M -> M^2 -> M^3 -> M^6 -> M^7 -> M^14 -> M^15

The Binary Method Input: M, e, n. Output: $C = M^e \mod n$. 1. if $e_{k-1} = 1$ then C := M else C := 1 # of m 2. for i = k - 2 downto 0 of Har 2a. $C := C \cdot C \pmod{n}$ 2b. if $e_i = 1$ then $C := C \cdot M \pmod{n}$ 3. return C

e = 10010110110110

of multiplications depends of Hamming Weight of e!

ECP State Machine

Simulation Waveform

d = 110100110101

Power

Double and Add

6	D	А	D	D	A	D	D	D	A	
0		1		e O	1	0	0	0 0 0	1	
5 —	Ŷ	φ Φ Φ	9 8 9	0 0 0	9 9 8	0 8 0 0	0	0 8 0	φ φ φ φ	φ 8
4 —	0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	08 80 0		е е е 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	φ φ φ φ φ φ φ φ		8
Power (watts) 6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		00 3000 3000 4000 4000 4000 4000 4000 4							
2 —			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000 00 00 000 000 00 00 000 00 00 000 00		δ Φ δ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ
0		2000	400	0	600 Time () ns)	80	00	10000	12000

Conclusions

- Assumptions made for various power models greatly influences analysis
- Need to compare variance in power consumption at different levels of abstraction