
Elliptic Curve Timing

Maria Polyakova

June 16, 2013

Background

For the assignment, the speed of operations on elliptic curves in different coor-
dinates will be explored. An elliptic curve is defined to be y2 = x3+ax+bmodp,
and repress a group, over which certain operations can be performed. The op-
erations can take place in several coordinates, which may simplify and quicken
some operations.
Two coordinate systems that were trialed here are the affine coordinates and
the projective coordinates.

Affine Coordinates

Addition in affine coordinates is defined as follows:
Given two points (x1, y1) and (x2, y2) on an elliptic curve, addition output a
third point (x3, y3) with the following properties:

x3 = s− x1 − x2mod(p)

y3 = s(x1 − x3) − y1

if the two points being added are the same,

s =
3x21 + a

2y1
mod(p)

when points are not the same

s =
y2 − y1
x2 − x1

mod(p)

This is a fairly long operation, because it requires taking inverses. Taking an
inverse of a number mod(p) is λ−1mod(p) = λp−2mod(p), which takes a long
time. That is why frequently, it is easier to use projective coordinates.

1



Projective Coordinates

Points in projective coordinates have 3 values, not two. The point (X1, Y1, Z1)
corresponds to the affine point (X1

Z2
1
, Y1

Z3
1

), when Z1 is unequal to zero. Otherwise,

it is the point at infinity. When converting to projective, Z is simply given the
value of 1 at the start. Addition is defined as:

A = X1Z
2
2 B = X2Z

2
1 C = Y1Z

3
2 D = Y2Z

3
1 E = B −A F = D − C

and

X3 = −E3 − 2AE2 + F 2 Y3 = −CE3 + F (AE2 −X3) Z3 = Z1Z2E

Doubling(when the points are the same) is defined as:

A = 4X1Y
2
1 B = 3X1 + aZ4

1

and
X3 = −2A+B2 Y3 = −8Y 4

1 +B(A−X3) Z3 = 2Y1Z1

Because the following operations don’t require an inversion, they are much
faster than the affine coordinates.

Curves

Because complexity is defined by how large each curve is, for cryptographic
purposes, the curves must be very large. The curve is defined as above, and the
parameters are given by NIST, and claimed as secure. The curve used is below.
The Curve is P-192
p− 192 = 6277101735386680763835789423207666416083908700390324961279
a = 6277101735386680763835789423207666416083908700390324961276
b = 2455155546008943817740293915197451784769108058161191238065

Generating Point P:
xP = 602046282375688656758213480587526111916698976636884684818
yP = 174050332293622031404857552280219410364023488927386650641
order n = 6277101735386680763835789423176059013767194773182842284081

Timings: Implemented in Python

For each of the values of the base, the affine timing should be slower than the
projective. The larger the base, the longer exponentiation will take, and there-
fore, the greater the difference that should be seen between operations done in
affine coordinates and the operations done in projective coordinates. For any
value, the projective coordinates should be much faster than affine. Below is
a timing of the multiplication on elliptic curves in projective and affine coordi-
nates. d and b are the constants by which each point must be multiplied. Base
values, 2bit -1

2



192-bit
d1 = 6277101735386680763835789423207666416102355444464034512895

144-bit
d2 = 22300745198530623141535718272648361505980415

96-bit
d3 = 633825300114114700748351602687

Edited Values, to mess up the signed-digit expansion
192-bit

b1 = 6277101735386680863835289423297666416102355444464034512895

144- bit
b2 = 22300745198839623141535718272648321505980415

96-bit
b3 = 693825300114114800748351632687

[d] Affine(sec) Projective(sec)
d1 .174 .073
b1 .142 .092

d2 .119 .086
b2 .121 .073

d3 .101 .069
b3 .109 .063

As expected, multiplication in affine coordinates is consistently smaller than
in projective coordinates.

3


