
A Comparison of Two Methods for Montgomery
Multiplication Using C++

Oskar Asplin
asplin@umail.ucsb.edu

June 2017

Abstract

This paper will examine how to implement the classic Montgomery algo-
rithm and the CIOS algorithm, and compare their runtime. Both algorithms
will be implemented in the C++ programming language and tested using vari-
ous sets of input parameters. The CIOS algorithm is stated to be more effective,
so I will find out if this is true for my implementation, and to what degree they
differ. Their runtime for unique sets of input will be compared and analyzed.

1 Introduction

Montgomery multiplication is a method for performing fast modular multiplication,
and it was introduced by Peter L. Montgomery in 1985. It has made a huge difference
in the world of binary computation and cryptographic engineering, by improving
the efficiency of modular multiplication. The CIOS (Coarsely Integrated Operand
Scanning) algorithm is another method of performing Montgomery multiplication,
which is even more efficient. CIOS only requires 1.5 integer multiplications instead
of 3 as the classic method needs.

In this project I have implemented the two algorithms in C++ in an attempt to
further understand how they work, and test how they compare to each other in terms
of runtime.

2 Implementation in C++

Before writing code, the two methods was first studied by reviewing professor Koç’s
course material in CS 293G, as well as Wikipedia and other academic sources online.
This is the Pseudo code for the classic Montgomery multiplication:

function MonPro(a, b)
input: a, b, n, r, n′

output: u = a · b · r−1 mod n

1

1: t← a · b
2: m← t · n′ (mod r)
3: u← (t+m · n)/r
4: if u ≥ n then u← u− n
5: return u

It was fairly simple to code in C++, however I met several errors as I ran it with test
input. By adjusting the code in order to fix the errors, I was able to make a solid
code that can take any set of input parameters (a,b,n) of type int16 which returned
the correct output u.

The Pseudo code for the CIOS method is as follows:

function MonPro(a, b)
input: a, b, n, r, n′

output: u = a · b · r−1 mod n
1: u← 0
2: for i = 0 to k − 1
3a: u← u+ Ai · b
3b: u← u+ U0 · n
3c: u← u/2
4: if u ≥ n then u← u− n
5: return u

The CIOS method was a bit easier to implement, but I could not resolve the problem
of going bit by bit through A without doing a new byte multiplication. In hardware
implementation of CIOS it is probably more effective than the classical method, but
in my case, step 3 lead to more byte multiplications.

Both algorithms used the Extended Euclidean Algorithm which I made using a tem-
plate I found online. Its Pseudo code is shown below:

(u, v) ← EEA(a, n)

u · a− v · n = 1

a−1 = u (mod n)

The code for the two methods is added in section 5.

3 Results

After successfully implementing both Montgomery methods and testing them with
numerous inputs to see they worked properly, I made a function to time them. 100

2

000 random input sets were created and then fed into the two Montgomery functions.
Both algorithms were timed separately, and the test was performed 200 times.

The results of randomly generated int16-inputs are shown in figure 1 and 2. As
seen in the figures, the classic method performed much better than CIOS, which was
approximately 71% slower. The median time for the classic Montgomery was 314
µs, while the median for the CIOS was 539 µs. This means that a single product
calculation takes about 314 ns and 539 ns for the two methods. In theory the CIOS
should perform better at a hardware level as it needs fewer multiplications, but due
to my implementation in a higher level language (C++), the CIOS algorithm was
not able to perform as fast as it could. I believe the multiplications at step 3 in the
algorithm were performed as byte multiplications instead of going through A bitwise.
I tried different ways of performing the third step, but was not able to improve the
runtime.

0 20 40 60 80 100 120 140 160 180 200
0

100

200

300

400

500

600

700

T
im

e
[m

ic
ro

s
e

c
/1

0
0

0
 i
n

p
u

ts
]

Time to compute algorithms using random sets of input

Classic Montgomery

CIOS

Figure 1: Plot showing result of 200 tests with 100 000 random inputs

3

1

320

340

360

380

400

420
T

im
e

[m
ic

ro
s
e

c
/1

0
0

0
 i
n

p
u

ts
]

Boxplot of Classic Montgomery

1

540

560

580

600

620

640

T
im

e
[m

ic
ro

s
e

c
/1

0
0

0
 i
n

p
u

ts
]

Boxplot of CIOS

Figure 2: Boxplot showing result of 200 tests with 100 000 random inputs

When bounding the input to numbers up to 256 (int8), both methods performed
better, and the CIOS method improved significantly. The results can be seen in figure
3 and 4. The classic method now had a median of 265 µs and CIOS had a median
of 333 µs. Though CIOS is still 26% slower, its performance improved drastically.
Again I believe this is due to step three in the algorithm, which now has to perform
fewer multiplications. The number of operations for the classic method is constant in
both cases.

4

0 20 40 60 80 100 120 140 160 180 200
0

100

200

300

400

500

600

700

T
im

e
 [

m
ic

ro
s
e

c
/1

0
0

0
 i
n

p
u

ts
]

Time to compute algorithms using random sets of input

Classic Montgomery

CIOS

Figure 3: Plot showing result of 200 tests with 100 000 random int8-inputs

5

1

265

270

275

280

285

290

295

300

T
im

e
 [

m
ic

ro
s
e

c
/1

0
0

0
 i
n

p
u

ts
]

Boxplot of Classic Montgomery

1

330

340

350

360

370

380

390

T
im

e
 [

m
ic

ro
s
e

c
/1

0
0

0
 i
n

p
u

ts
]

Boxplot of CIOS

Figure 4: Boxplot showing result of 200 tests with 100 000 random int8-inputs

All testing was done on a computer with an Intel Core i7-4500U processor with
1.8-3GHz performance.

4 Conclusion

This project has taught me how two different methods of performing Montgomery
multiplication work in theory, and how they can be implemented using C++. As
stated in the results, the CIOS is more effective if properly implemented in a lower
programming language or at hardware level, however I was not able to achieve this
ideal use of the algorithm. Therefore we can see significantly better results for the
classic method in my C++ coding. Since I have little knowledge of how the compiler
breaks down my written code, I do not know the exact number of multiplications
or the exact execution in the compiled program. If one were to perfectly compare
the difference between the two algorithms, one would have to code in an assembly
language or know how the compiler operates.

6

5 C++ code

5.1 monPro.cpp

1 #inc lude <iostream>
2 us ing namespace std ;
3 #inc lude <b i t s e t >
4 #inc lude <s t d i o . h>
5 #inc lude <math . h> /∗ pow ∗/
6 #inc lude <s t d l i b . h> /∗ srand , rand ∗/
7 #inc lude <sys / time . h> /∗ gett imeofday , t imeval ∗/
8 #inc lude <algor ithm> /∗ sort , begin , end ∗/
9

10 #d e f i n e NUM INPUTS 100000
11 #d e f i n e NUM SAMPLES 200
12 #d e f i n e INT16 SIZE 65536
13

14 // ax + by = gcd (a , b)
15 i n t gcdExtended (i n t a , i n t b , i n t ∗x , i n t ∗y)
16 {
17 // Base Case
18 i f (a == 0)
19 {
20 ∗x = 0 ;
21 ∗y = 1 ;
22 re turn b ;
23 }
24

25 i n t x1 , y1 ; // To s t o r e r e s u l t s o f r e c u r s i v e c a l l
26 i n t gcd = gcdExtended (b%a , a , &x1 , &y1) ;
27

28 // Update x and y us ing r e s u l t s o f r e c u r s i v e c a l l
29 ∗x = y1 − (b/a) ∗ x1 ;
30 ∗y = x1 ;
31

32 re turn gcd ;
33 }
34

35 // Find p o s i t i o n o f the MSB in Int16
36 i n t msbPosInt (i n t a)
37 {
38 i n t bitCompare = 65536 ; // b i t va lue : 100000000000000000
39 i n t pos = 16 ;
40 i n t b = a & bitCompare ;
41 whi le (b == 0)
42 {
43 bitCompare = bitCompare >> 1 ;
44 pos −= 1 ;
45 b = a & bitCompare ;
46 }
47 re turn pos ;
48 }
49

7

50 i n t c i o s (i n t a , i n t b , i n t n)
51 {
52 i n t k = msbPosInt (n) +1;
53 i n t r = pow(2 , k) ;
54 b i t s e t <s i z e o f (i n t)∗8> a b i t s (a) ;
55 long u = 0 ;
56

57 f o r (i n t i = 0 ; i < k ; i++)
58 {
59 // Step 3a
60 u = u + a b i t s [i]∗b ;
61 // Step 3b
62 u = u + (u & 1) ∗ n ;
63 // Step 3c
64 u = u >> 1 ;
65 }
66 // Step 4
67 i f (u >= n)
68 {
69 u = u − n ;
70 }
71 re turn u ;
72 }
73

74 i n t c lass icMonPro (i n t a , i n t b , i n t n)
75 {
76 i n t k = msbPosInt (n) +1;
77 i n t r = pow(2 , k) ;
78 i n t n dot , x ;
79 unsigned i n t t ;
80 long u , m;
81

82 gcdExtended (r , n , &x , &n dot) ;
83 i f (x < 0) {
84 x = n + x ;
85 n dot = n dot − r ;
86 }
87 n dot = −n dot ;
88

89 // Step 1
90 t = a∗b ;
91

92 // Step 2
93 m = t ∗n dot ;
94 m = m & (r−1) ;
95

96 // Step 3
97 u = (t + m∗n) ;
98 i n t msbR = msbPosInt (r) ; // d iv id e by r
99 u = u >> msbR;

100

101 // Step 4
102 i f (u >= n) {
103 u = u − n ;

8

104 }
105

106 // Step 5
107 re turn u ;
108 }
109

110 i n t main ()
111 {
112 i n t u , v ;
113 s t r u c t t imeval tva lBe fore , t v a l A f t e r ;
114 long c l a s s i cT ime [NUM SAMPLES] , ciosTime [NUM SAMPLES] ;
115

116 /∗ i n i t i a l i z e random seed : ∗/
117 srand (time (NULL)) ;
118

119 i n t ∗ n = new i n t [NUM INPUTS] ;
120 i n t ∗ a = new i n t [NUM INPUTS] ;
121 i n t ∗ b = new i n t [NUM INPUTS] ;
122

123 // Begin t e s t i n g
124 /∗ ∗∗ ∗/
125 f o r (i n t t e s t x = 0 ; t e s t x < NUM SAMPLES; t e s t x++)
126 {
127 f o r (i n t i = 0 ; i < NUM INPUTS; i++)
128 {
129 n [i] = (rand () % (INT16 SIZE−1)/2) ∗2 + 1 ; // Need an odd

number f o r gcd (r , n) = 1
130 a [i] = rand () % n [i] ;
131 b [i] = rand () % n [i] ;
132 }
133

134 // Record time f o r NUM INPUTS o f the c l a s s i c montgomery
a lgor i thm

135 gett imeofday (&tva lBe fore , NULL) ;
136

137 f o r (i n t i = 0 ; i < NUM INPUTS; i++)
138 {
139 u = class icMonPro (a [i] , b [i] , n [i]) ;
140 }
141

142 gett imeofday (& tva lAf t e r , NULL) ;
143

144

145 c l a s s i cT ime [t e s t x] = ((t v a l A f t e r . t v s e c − tva lBe f o r e . t v s e c)
∗1000000L

146 +t v a l A f t e r . t v u s e c) − tva lBe f o r e . t v u s e c ;
147 // Divide by a s c a l a r to get average time per 1000 :
148 c l a s s i cT ime [t e s t x] /= 100L ;
149

150 // Record time f o r NUM INPUTS o f the CIOS algor i thm
151 gett imeofday (&tva lBe fore , NULL) ;
152

153 f o r (i n t i = 0 ; i < NUM INPUTS; i++)
154 {

9

155 v = c i o s (a [i] , b [i] , n [i]) ;
156 }
157

158 gett imeofday (& tva lAf t e r , NULL) ;
159

160 ciosTime [t e s t x] = ((t v a l A f t e r . t v s e c − tva lBe f o r e . t v s e c)
∗1000000L

161 +t v a l A f t e r . t v u s e c) − tva lBe f o r e . t v u s e c ;
162 // Divide by a a s c a l a r to get average time per 1000 :
163 ciosTime [t e s t x] /= 100L ;
164 }
165 /∗ ∗∗ ∗/
166 //End o f t e t s i n g
167

168 /∗ Sort ar rays ∗/
169 s o r t (c las s i cTime , c l a s s i cT ime + NUM SAMPLES) ;
170 s o r t (ciosTime , ciosTime + NUM SAMPLES) ;
171

172 /∗ Print r e s u l t s ∗/
173 cout << ”Time in microseconds f o r the two a lgor i thms per 1000 inputs

: ” << endl ;
174 p r i n t f (” c lass icMonPro min : %ld microseconds \nclass icMonPro max : %ld

microseconds \n” ,
175 c l a s s i cT ime [0] , c l a s s i cT ime [1 9 9]) ;
176 p r i n t f (”CIOS min : %ld microseconds \nCIOS max : %ld microseconds \n” ,

ciosTime [0] , c iosTime [1 9 9]) ;
177

178 /∗
179 // Pr int a l l t imes
180 cout << ” C l a s s i c Montgomery t imes : ” << endl ;
181 f o r (i n t i = 0 ; i < NUM SAMPLES; i++)
182 {
183 cout << c l a s s i cT ime [i] << endl ;
184 }
185

186 cout << ”CIOS times : ” << endl ;
187 f o r (i n t i = 0 ; i < NUM SAMPLES; i++)
188 {
189 cout << ciosTime [i] << endl ;
190 }
191 ∗/
192

193 /∗ Delete dynamic memory usage ∗/
194 d e l e t e [] n ;
195 d e l e t e [] a ;
196 d e l e t e [] b ;
197

198 re turn 0 ;
199 }

Code/monPro.cpp

10

