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Abstract
In this paper we look at the basics of the ”learning with errors” prob-

lem as applied to the engineering of cryptosystems. We are particularly
interested in these types of cryptosystems because of their full homomor-
phic properties. Homomorphic properties are quite valuable and have
applications in the arena of cloud computing. Machine learning computa-
tion on encrypted data can produce security/portability benefits for end
users. We will start by exploring the high-level motivation for using the
”learning with errors” problem. It is a promising candidate for the new
”hard problem” in cryptography in general. The post-quantum benefits of
such a scheme are of particular interest. A unifying theme in all this will
be a reliance on lattice-based cryptographic concepts. We will give such
background where necessary. Near the end, we mention some outstanding
issues in this area. Finally, we will conclude with specific proposals for
future work.

1 Introduction

The basic definition of a homomorphic encryption scheme is a scheme
in which one can perform a function on multiple ciphertext, emit a re-
sult, and the decrypted version of this result will be the same as if the
function were performed on the same set of plaintexts. This paper was
prompted by one prominent example of homomorphic encryption applied
to a machine learning task. The example is that of Numerai, which al-
lows otherwise ”siloed” hedge fund data to be shared publicly without
revealing it’s propreitary information. We are interest specifically in fully
homomorphic encryption (FHE). A homomorphic encryption scheme is
fully homomorphic if it can handle all functions, represented by addition
and multiplication in finite fields. Some existing encryption schemes are
partially homomorphic: RSA and ElGamal (multiplication) and Pailler
(addition). Fully homomorphic schemes, on the other hand, can be repre-
sented by simple AND, OR, NOT, and XOR gates in base 2. One primary
issue with FHE is that since it is built using these functions which can be
easily enumerated, it has issues when there does not exist a priori knowl-
edge of the lengths of the inputs. This is specifically an issue with regards
to database systems utilizing homomorphic encryption.[14]
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2 Motivation

One primary reason for wanting homomorphic encryption in a cloud set-
ting is to maintain privacy while still operating in a ”public” cloud in
which the cloud provider (presumably) has a theoretical ’backdoor’ into
your application and data. A basic example would be the one shown in
Figure 1. You might have a web app running on some cloud provider
sending streaming event data every time it arrives from the outside world
or internally. Either way, this data is now effectively visible to the cloud
provider once it is in their system. Having another layer of encryption
could prove useful in terms of data portability. In our case, the ”Event
Data” (as shown) is assumed to have come into the web app already
homomorphically encrypted. Thus, no opportunity is given for the in-
frastructure provider to see the method (and keys) used. But such en-
cryption schemes are not a panacea and other information can still be
snooped from the application. For example, the amount of rows queried
in a database.[14] As an aside, it is worth noting that the example of
Numerai is slightly simpler than the cloud example in that the encrypted
data never has to be decrypted. It is used directly in a machine learning
model and never decrypted.[3] Beyond ML models and/or cloud security,
the utilization of homomorphic encryption ties in nicely with the future
need for post-quantum cryptographic systems. The Learning with Errors
(LWE) problem, specifically the Ring Learning with Errors variant which
we will mostly focus on, may vary well be the new standard ’hard’ prob-
lem to base encryption schemes on. It is quantum-safe and is already
gaining traction. It can be of great benefit in areas where privacy is key,
medical/genomic applications being one example.[7]

Figure 1: Cloud setup with an ML component. Credit: Apache Foundation
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3 Learning with Errors

The Learning with Errors problem is a problem in the area of machine
learning that is believed to be hard to solve. Regev introduced the appli-
cation of this problem to cryptography in 2005.[9] In order to ’solve’ the
problem, an attacker must be able to 1.) Get some samples (x,y) where x
belongs to the domain and y belongs to the range of the function and 2.)
Find some secret noise function. If the attacker has both of these, they
may be able to obtain y = f(x), in general, with high probability.

3.1 Lattice-based Cryptography

An excellent overview of the application of Lattice-based cryptography
can be found at [6]. Some highlights relevant to the LWE Problem are
presented in the following sections.

Fundamentally, Ring Learning with Errors is a promising scheme be-
cause it is reducible to the NP-Hard Shortest Vector Problem (SVP) in a
lattice.[13]

3.2 Shortest Vector Problem

In SVP, a basis of a vector space V and a norm N are given for a lattice L.
Given this, one must find the shortest non-zero vector in V, as measured
by N, in L. This is illustrated in euclidean space in the image below
(although other vector spaces can be used).

Figure 2: Shortest Vector in a lattice (basis in blue). Credit: Wikipedia

3.3 Ring Learning with Errors

The variant we will be looking at is the Ring variant of the LWE problem.[11]
This variant is simply LWE over a ring. Other more elaborate techniques
have come out recently, but this variant is still good to look at for intro-
ductory purposes. The benefits of this variant over the plain vanilla LWE
problem are as follows: representing n vectors requires only O(n) elements
of Zq, as opposed to O(n2) and using the fast Fourier transform, opera-
tions on such vectors can be significantly sped up. These results lead to
cryptographic constructions that have smaller keys and are considerably
faster.[10]
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For Ring-LWE, the basic setup is as follows:

Let ring Rq = Zq[X]/(Xn + 1). Along with this, you have *P (an er-
ror distribution on Rq), and a secret s that is drawn from the set Rq. The
attacker is given pairs (a, as + e) with

• a, uniformly random from Rq

• e, sampled from P

The task for the attacker is to find s.

*P is often a discrete Gaussian (with small standard deviation).

3.4 Decision vs. Search

In the LWE problem, there are two separate versions of the problem. One
of them is the Decision problem and the other is the Search problem. The
Search problem consists of what was described above (namely, given a set
of samples, try to derive the secret s given those samples and some noise).
The Decision problem involves taking candidate samples and determining
if they are ”LWE samples” or uniformly random.

4 Implementations

One of the earliest examples of applying R-LWE is in the Key Exchange
mechanism described in [8]. A more recent implementation is that being
persued by Ducas, et. al in [4]. Google began experimenting with this
approach recently: [2]. Below we talk about the setup of any practical
implementation of an LWE scheme and briefly give two examples of usage:
public-key and signatures.

• n, a prime number or power of 2. (n coefficients, max degree n-1)

• q, a prime number. (coefficients of the polynomials will be integers
mod q and the arithmetic will be in Rq)

• Phi(x), a cyclotomic polynomial. When n is a power of two Phi(x) =
(xn + 1)

• a(x), a known fixed polynomial of degree less than n and with coef-
ficients in Rq

• s(x), a secret polynomial of degree less than n, with coefficients in
Rq chosen according to a probability distribution

• e(x), a error polynomial of degree less than n, with coefficients being
in Rq and ”small” in the integers and chosen according to an error
probability distribution P .

• b(x), a public polynomial equal to b(x) = a(x) ∗ s(x) + e(x).

b(x) is the public key, s(x) and e(x) together constitute the private
key. The parameters n, q, Phi(x) and a(x) along with the probability
distributions for the coefficients of s(x) and e(x) are the system wide pa-
rameters.
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4.1 Public-Key System

A scheme for the construction of a public key system based on the learning
with errors problem was originally provided by Regev in [9]. A visualiza-
tion of the Key generation and Encryption steps is shown below. The
Decrypt function can naturally be derived from what is shown.

Figure 3: Generation Encryption for original LWE scheme. Credit: Leo Ducas

4.2 Signature

A scheme for signature generation is described in [5] and [12]. It goes as
follows:

• Generate small polynomials y0(x), y1(x) (coefficients from [−b to b])

• Compute w(x) = a(x) ∗ y0(x) + y1(x)

• Map w(x) into a bit string W

• Compute c(x) = PolyHash(W + m)

– c = polynomial with k non-zero coefficients

– + = concatenation of strings

• Compute z0(x) = s0(x) ∗ c(x) + y0(x)

• Compute z1(x) = s1(x) ∗ c(x) + y1(x)

• Until the infinity norms of z0(x) and z1(x) <= Beta go to step 1.

• The signature is the triple of polynomials c(x), z0(x) and z1(x)

At this point, you send the message c(x). Additionally, you transmit
z0(x) and z1(x) to the verifier. The process for verifying a message then
consists of the following:
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• Verify that the infinity norms of z0(x) and z1(x) <= Beta, if not
reject the signature.

• Compute w′(x) = a(x) ∗ z0(x) + z1(x)− t(x) ∗ c(x)

• Map w’(x) into a bit string W’

• Compute c′(x) = PolyHash(W ′|m)

If c’(x) != c(x) reject the signature, otherwise accept the signature as
valid.

5 Issues

We have presented the basic motivations for using LWE in cryptography,
as well as given some examples of existing implementations. But natu-
rally we should touch on some of the weaknesses that can exist in such
a scheme, both from a mathematical point-of-view and from applications
utilizing the homomorphic properties that LWE schemes possess.

Of course, any generic/naive attack on an RLWE scheme is exponen-
tial. But results have been given for specific weak instances. Lautner, et.
al. have done work in formalizing the necessary properties number fields
must have, in order to be susceptible.[7] Additionally, they have shown
conditions necessary for a particular application of RLWE to be consid-
ered ”weak”. The implementations shown previously are naturally free
of these weaknesses. For example, instances utilizing 2-power cyclotomic
fields do not satisfy all the properties necessary for a sub-exponential at-
tack. Such theoretical work naturally serves to boosts confidence, but
many open questions remain.

Aside from theoretical concerns, there is also the ever-present issue
of side-channel attacks. As mentioned early on in [14], homomorphic
schemes can provide data privacy on the data itself, but certain informa-
tion can still be inferred. Database accesses to this stored data can still
yield information about the data. The application operating on the data
must still be ”hardened” to avoid such side channel attacks. For example,
by always querying some ”window” of data on each node. Aside from
side channel attacks, a machine learning expert would obviously be con-
cerned with how their models may be affected by operating on encrypted
data. Previous work has been done in the area of evaluating such models,
for example in [1]. Such concerns naturally apply to any homomorphic
encryption scheme (not just LWE-based schemes). However, it is worth
staying aware of such drawbacks when it comes to specific applications
of LWE, such as making it a key component in the design of encrypted
databases used for training machine learning models.

An underlying concern to all users of such LWE schemes would, of
course, be the ”hardness” of the scheme being used. Though the RLWE
problem on ideal lattices is believed to be hard, and commercial appli-
cations are beginning to spring up, the demonstration of hardness relies
on some non-standard assumptions. The only way to reduce ”standard”
problems to LWE is via a quantum reduction. Additionally, there are
still some gaps in the understanding of lattice problems when applied to
cryptosystems. [10]

6



6 Conclusion

Throughout our discussion, the overall focus has been on the application
of the Learning with Errors problem to two separate but related problems.
The application and further refinement of such approaches can and will
present a huge set of possibilities. Not only do these approaches poten-
tially allow for the construction of practical post-quantum cryptosystems,
but they also prove to be a natural fit for applications with specific privacy
requirements (that may or may not utilize a machine learning component).
Depending on the adaptability of given infrastructures, such LWE cryp-
tographic approaches may allow for increased application portability for
secure workloads. It seems worthwhile to explore this area further. The
post-quantum security guarantees combined with the homomorphic prop-
erties of such cryptosystems make their adoption a win-win.

An interesting exercise might be to take many of the existing imple-
mentations of LWE-based cryptographic systems and evaluate them with
respect to various machine learning and cloud tasks (taking into account
performance in terms of speed and security guarantees, as well as accuracy
of ML models in terms of error metrics). The topic of error metrics may
be worthy of more exploration in it’s own right. Can such LWE schemes
be strengthened further when certain assumptions are made about how
they will be used. Additionally, how will the application of these schemes
affect the work of data scientists. It would seem that such schemes will
not necessarily be modular in design and might have side effects. There
are many different issues that can be explored further which are separate
from the underlying mathematics of any given implementation. A good
starting point would be to perform such exercises starting with RLWE
as the underlying implementation. If such exercises proved fruitful, they
could be of great value to other developers who want to harden their ap-
plications. Relieving the burden on said developers would go a long way
towards wider adoption. Thus, making many connected applications more
secure.

6.1 Future Work

As previously stated, the study of these LWE schemes and how well they
work in Cloud and/or Machine Learning environments (for various use
cases) may deserve more exploration. In becoming more acquainted with
the techniques used for LWE, and homomorphic encryption more gener-
ally, the author of this work plans on exploring this area more thoroughly.
Any comments or suggestions are welcomed. This class paper is naturally
not comprehensive and there is likely much more to explore in the LWE
space, as well as in the homomorphic encryption space (specifically with
respect to use cases for such encryption). Please direct all such correspon-
dence to pgalloway@cs.ucsb.edu.
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