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WHY R-LWE ?

Most signature schemes currently in use depend on the 
difficulty of factoring or of the DLP

 Shor (1994): A quantum computer can efficiently (i.e. in 
polynomial time) deal with both factoring and the DLP

Grover (1996): Speed-up on quantum computers 
against symmetric ciphers

We therefore need quantum-resistant algorithms !



WHY R-LWE ?

 Post-quantum schemes:
•Lattice-based: R-LWE, NTRU, GRH, …
•Multivariate: Rainbow
•Hash-based: Merkle, XMSS, …
•Code-based: Niederreiter, McEliece, …
•Supersingular EC isogeny
•AES with large key sizes



WHY R-LWE ?

At 128 bit of post-quantum security (source:Wikipedia)
Algorithm Type Public Key Private Key Signature

NTRU Encrypt Lattice 6130 B 6743 B

Streamlined NTRU 
Prime

Lattice 1232 B

Rainbow 124 KB 95 KB

SPHINCS Hash Signature 1 KB 1 KB 41 KB

BLISS-II lattice 2 KB 7 KB 5 KB

New Hope Ring-LWE 2 KB 2 KB

Goppa-based McEliece 1 MB 11.5 KB

Quasi-cyclic MDPC-
based McEliece

8 KB 4384 B

SIDH Isogeny 564 B 48 B

SIDH (compressed keys) Isogeny 330 B 48 B

3072-bit Discrete Log 
(not PQC)

384 B 32 B

256-bit Elliptic Curve 
(not PQC)

32 B 32 B



WHY R-LWE ?

 R-LWE is efficient and several improvements have 
reduced the key sizes and number of computations 
even further (e.g. Zhang 2015 for the key exchange)

 The average case complexity of solving the lattice 
problem on which R-LWE is based is related to the 
worst case complexity of the shortest vector problem, 
which is NP-hard (Ajtai 1996, 1998)

 Pedro covered the key exchange last week; R-LWE can 
also be used for digital signature



R-LWE GLP DIGITAL SIGNATURE

We follow the GLP scheme by Güneysu T., 
Lyubashevsky V., Pöppelmann T. (2012) 

As with the key-exchange, we work in the ring ideal 
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where Φ is the cyclotomic polynomial 𝑥+ + 1, 𝑞 is 
a prime number and 𝑛 a power of 2

We work in the least magnitude representation, i.e. 
ℤ0 = {− 045
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}



R-LWE GLP DIGITAL SIGNATURE

 “Small” polynomial: infinity norm (i.e. max of the 
coefficients in ℤ) is bounded
Uniform sampling: the coefficients are all chosen 
uniformly in {−𝑏,… , 𝑏} where 𝑏 ≪ 𝑞
One can also use discrete Gaussians in	ℤ0+ in which case 
solving the R-LWE problem is as hard as the worst-case 
lattice problem with quantum algorithms (Lyubashevsky
2010)
 The private key is composed of two polynomials 𝒔𝟏and 
𝒔𝟐 with coefficients in {−1, 0, 1}



R-LWE GLP DIGITAL SIGNATURE

As with DSA, a hash function is required. The hash 
function maps bit strings to small polynomials

 It is possible to choose a hash function such that exactly 
𝑘 coefficients are equal to 1 or -1, and the others to 0

An upper bound 𝛽 on the infinity norm (i.e. max of the 
coefficients) of certain vectors is fixed in advance to be 
equal to 𝛽 = 𝑏 − 𝑘, in order to avoid leaking 
information about the secret key



R-LWE GLP DIGITAL SIGNATURE

 Example of the 𝑘 = 32, 𝑛 = 512 hash function 
presented in the GLP paper: 
 H maps 0,1 ∗	to a 160-bit string 𝑟, which is then mapped 
injectively to the set of polynomials of degree 𝑛 − 1 with all 
coefficients equal to 0 except for 32 of them, equal to either 1 
or -1

 Read 𝑟 5 bits at a time, e.g. 𝑟5𝑟6𝑟H𝑟I𝑟J, and create a 16-digit 
string. If 𝑟5 = 0, put a -1 at index 𝑟6𝑟H𝑟I𝑟J (read as a binary 
between 0 and 15) of the 16-digit string. If 𝑟5 = 1, put a 1 at 
index 𝑟6𝑟H𝑟I𝑟J

 E.g. if we are reading in 𝑟	(01101), the 16-digit string for those 
5 bits is (0		000		000		000		000		(−1)00)

 This gives a 5KL
J
∗ 16 = 512 bit string which we read as a poly



R-LWE GLP DIGITAL SIGNATURE –
PUBLIC KEY GENERATION

𝑞, 𝑛, 𝑏, 𝑘,Φ(𝑋) are known by the signer and the 
verifier

 The private key consists in two polynomials 𝑠L and 𝑠5
chosen uniformly randomly from −1, 0, 1 + by the 
signer

 The public key consists in a polynomial 𝑎 chosen in a 
uniformly randomly from 
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and 𝑡 = 𝑎𝑠L + 𝑠5



R-LWE GLP DIGITAL SIGNATURE –
SIGNATURE

1. Two polynomials 𝑦L, 𝑦5are selected by sampling 
uniformly their coefficients from {−𝑏,… , 𝑏}

2. Compute 𝑤 = 𝑎𝑦L + 𝑦5 and compute 𝑐 = 𝐻(𝑤,𝑚)
3. Compute 𝑧L = 𝑠L𝑐 + 𝑦L and 𝑧5 = 𝑠5𝑐 + 𝑦5 (no 

reduction mod 𝑞 necessary in this step given the 
“small coefficients” condition)

4. If 𝑧L Xor 𝑧5 X > 𝛽,  restart at 1.

5. The signature is (𝑐, 𝑧L, 𝑧5)



R-LWE GLP DIGITAL SIGNATURE –
VERIFICATION

1. If 𝑧L Xor 𝑧5 X > 𝛽, reject

2. Compute 𝑤Z = 𝑎𝑧L + 𝑧5 − 𝑡𝑐

3. If 𝑐 = 𝐻 𝑤Z,𝑚 , accept



R-LWE GLP DIGITAL SIGNATURE –
VERIFICATION PROOF

 Proof:
𝑤′	= 𝑎𝑧L + 𝑧5 − 𝑡𝑐
	= 𝑎 𝑠L𝑐 + 𝑦L + 𝑧5 − 𝑎𝑠L + 𝑠5 𝑐
	= 𝑎𝑦L + 𝑠5𝑐 + 𝑦5 − 𝑠5𝑐
	= 𝑎𝑦L + 𝑦5 = 𝑤

Note: while a smaller 𝛽 is more secure, it increases 
the likelihood of having to resample the 𝑦\
 For 𝑘 = 32 the likelihood of ||𝑧\||X ≤ 𝛽 can be 

shown to be equal to 1 − KI
6_`5
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R-LWE GLP DIGITAL SIGNATURE

 R-LWE can be used for quantum-resistant asymmetric 
key encryption/decryption and digital signature with a 
speed comparable to current methods (RSA, ECDSA)
 The GLP algorithm with 𝑛 = 512, 𝑞 = 8383489, 𝑏 =
25I	has a signature size of ~1KB, a secret key size of 
~200B, and a public key size of ~1.5KB and provides 
a security equivalent to ~100 bits
 The GLP algorithm can be implemented on embedded 
systems and was tested to be 1.5x faster than RSA



CONCLUSION

Other algorithms based on R-LWE exist for signature, 
such as BLISS

Akleylek & al. (2016): ring-TESLA: most secure 
implementation to date, 20% faster than GLP at the 
cost of larger keys / signature, smaller key sizes than 
BLISS but 1.45x slower, although BLISS may be 
vulnerable to timing attacks

 Relatively new subfield of crypto, expect to see a lot of 
development in the next few years due to the proven 
security of R-LWE !


