

RING LEARNING WITH ERRORS DIGITAL SIGNATURE

Adam Ibrahim CS293G

- Most signature schemes currently in use depend on the difficulty of factoring or of the DLP
- Shor (1994): A quantum computer can efficiently (i.e. in polynomial time) deal with both factoring and the DLP
- Grover (1996): Speed-up on quantum computers against symmetric ciphers
- We therefore need quantum-resistant algorithms !

Post-quantum schemes:

- Lattice-based: R-LWE, NTRU, GRH, ...
- Multivariate: Rainbow
- Hash-based: Merkle, XMSS, ...
- Code-based: Niederreiter, McEliece, ...
- Supersingular EC isogeny
- AES with large key sizes

• At 128 bit of post-quantum security (source: Wikipedia)

Algorithm	Туре	Public Key	Private Key	Signature
NTRU Encrypt	Lattice	6130 B	6743 B	
Streamlined NTRU Prime	Lattice	1232 B		
Rainbow		124 KB	95 KB	
SPHINCS	Hash Signature	1 KB	1 KB	41 KB
BLISS-II	lattice	2 KB	7 KB	5 KB
New Hope	Ring-LWE	2 KB	2 KB	
Goppa-based McEliece		1 MB	11.5 КВ	
Quasi-cyclic MDPC- based McEliece		8 KB	4384 B	
SIDH	lsogeny	564 B	48 B	
SIDH (compressed keys)	lsogeny	330 в	48 B	
3072-bit Discrete Log (not PQC)		384 B	32 B	
256-bit Elliptic Curve (not PQC)		32 B	32 в	

- R-LWE is efficient and several improvements have reduced the key sizes and number of computations even further (e.g. Zhang 2015 for the key exchange)
- The average case complexity of solving the lattice problem on which R-LWE is based is related to the worst case complexity of the shortest vector problem, which is NP-hard (Ajtai 1996, 1998)
- Pedro covered the key exchange last week; R-LWE can also be used for digital signature

- We follow the GLP scheme by Güneysu T., Lyubashevsky V., Pöppelmann T. (2012)
- As with the key-exchange, we work in the ring ideal $\frac{\mathbb{Z}_q[X]}{\Phi(X)}$ where Φ is the cyclotomic polynomial $x^n + 1$, q is a prime number and n a power of 2

• We work in the least magnitude representation, i.e. $\mathbb{Z}_q = \{-\frac{q-1}{2}, \dots, \frac{q-1}{2}\}$

- "Small" polynomial: infinity norm (i.e. max of the coefficients in \mathbb{Z}) is bounded
- Uniform sampling: the coefficients are all chosen uniformly in $\{-b,\ldots,b\}$ where $b\ll q$
- One can also use discrete Gaussians in \mathbb{Z}_q^n in which case solving the R-LWE problem is as hard as the worst-case lattice problem with quantum algorithms (Lyubashevsky 2010)
- The private key is composed of two polynomials s_1 and s_2 with coefficients in $\{-1, 0, 1\}$

- As with DSA, a hash function is required. The hash function maps bit strings to small polynomials
- It is possible to choose a hash function such that exactly k coefficients are equal to 1 or -1, and the others to 0
- An upper bound β on the infinity norm (i.e. max of the coefficients) of certain vectors is fixed in advance to be equal to $\beta = b k$, in order to avoid leaking information about the secret key

- Example of the k = 32, n = 512 hash function presented in the GLP paper:
 - H maps {0,1}* to a 160-bit string r, which is then mapped injectively to the set of polynomials of degree n - 1 with all coefficients equal to 0 except for 32 of them, equal to either 1 or -1
 - Read r 5 bits at a time, e.g. $r_1r_2r_3r_4r_5$, and create a 16-digit string. If $r_1 = 0$, put a -1 at index $r_2r_3r_4r_5$ (read as a binary between 0 and 15) of the 16-digit string. If $r_1 = 1$, put a 1 at index $r_2r_3r_4r_5$
 - E.g. if we are reading in r (01101), the 16-digit string for those 5 bits is (0 000 000 000 000 (-1)00)
 - This gives a $\frac{160}{5} * 16 = 512$ bit string which we read as a poly

R-LWE GLP DIGITAL SIGNATURE — PUBLIC KEY GENERATION

- $q, n, b, k, \Phi(X)$ are known by the signer and the verifier
- The private key consists in two polynomials S_0 and S_1 chosen uniformly randomly from $\{-1, 0, 1\}^n$ by the signer
- The public key consists in a polynomial a chosen in a uniformly randomly from $\frac{\mathbb{Z}_q[X]}{\Phi(X)}$ and $t = as_0 + s_1$

R-LWE GLP DIGITAL SIGNATURE — SIGNATURE

- 1. Two polynomials y_0, y_1 are selected by sampling uniformly their coefficients from $\{-b, ..., b\}$
- 2. Compute $w = ay_0 + y_1$ and compute c = H(w, m)
- 3. Compute $z_0 = s_0c + y_0$ and $z_1 = s_1c + y_1$ (no reduction mod q necessary in this step given the "small coefficients" condition)
- 4. If $||z_0||_{\infty}$ or $||z_1||_{\infty} > \beta$, restart at 1.
- 5. The signature is (C, Z_0, Z_1)

R-LWE GLP DIGITAL SIGNATURE — VERIFICATION

1. If
$$||z_0||_{\infty}$$
 or $||z_1||_{\infty} > \beta$, reject

2. Compute
$$w' = az_0 + z_1 - tc$$

3. If
$$c = H(w', m)$$
, accept

R-LWE GLP DIGITAL SIGNATURE — VERIFICATION PROOF

Proof:

$$w' = az_0 + z_1 - tc$$

= $a(s_0c + y_0) + z_1 - (as_0 + s_1)c$
= $ay_0 + (s_1c + y_1) - s_1c$
= $ay_0 + y_1 = w$

Note: while a smaller β is more secure, it increases the likelihood of having to resample the y_i

For
$$k = 32$$
 the likelihood of $||z_i||_{\infty} \le \beta$ can be shown to be equal to $\left(1 - \frac{64}{2b+1}\right)^{2n}$

- R-LWE can be used for quantum-resistant asymmetric key encryption/decryption and digital signature with a speed comparable to current methods (RSA, ECDSA)
- The GLP algorithm with n = 512, q = 8383489, $b = 2^{14}$ has a signature size of ~1KB, a secret key size of ~200B, and a public key size of ~1.5KB and provides a security equivalent to ~100 bits
- The GLP algorithm can be implemented on embedded systems and was tested to be 1.5x faster than RSA

CONCLUSION

- Other algorithms based on R-LWE exist for signature, such as BLISS
- Akleylek & al. (2016): ring-TESLA: most secure implementation to date, 20% faster than GLP at the cost of larger keys / signature, smaller key sizes than BLISS but 1.45x slower, although BLISS may be vulnerable to timing attacks
- Relatively new subfield of crypto, expect to see a lot of development in the next few years due to the proven security of R-LWE !