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Abstract

There are few algorithms that meet the secu-
rity needs of the post-quantum computing days
ahead, and already the need grows for the imple-
mentation and development of fast, efficient, and
secure post-quantum crypto-systems. The popu-
larity of lattice based post-quantum cryptography
does not mean that it is the only method that is
being researched and used. The use of supersin-
gular elliptic curve isogenies in cryptosystems is
also promising, and has several benefits. In this
paper we will explore the background of super-
singular elliptic curve isogenies, and their use in
cryptogrphy.

1. The State of Cryptography
Every day, all day long, millions of people

use computers. They expect there data to remain
safe, there identities to remain there own, and
there money to remain in there bank accounts.
The majority of them don’t realize the lengths
to which computer scientists and math matician
have gone to ensure (for the most part) the se-
cuity of there computer. However, a time ap-
proaches when a quantum computer could read-
ily overcome the hard problems used in ensure
that security; mainly the Diffie-Hallman Probelm
y = bxmobp where x is what you are solving for,
the Elliptic Curve Diffie-Hallman problem, and

Factoring.
Shor’s algorithm for quantum computers cre-

ated in 1994, breaks RSA and other factor based
crypto-systems. It does this by first reducing the
factoring problem to an order finding problem,
and then using a quantum algorithm to solve
order-finding. This order problem can again be
reduced to the Abelian Hidden Subgroup Prob-
lem (AHSP), which is more general and is the
reduction of all the difficult problems mentioned
above that keep the majority of cryptogrphy
secure. The (AHSP) can be represented as:
Input: Abelian group G, a set X , H ≤ G, and
f : G→ X where f(g1) = f(g2) iff g1H = g2H
Output: A generating set H

This is important because Shor’s algorithm can
solve the AHSP for all finite Abelian groups, but
not for non-Abelian groups. Now cryptographers
look toward HSPs using non-Abelian groups,
like the graph isomophism problem and shortest
vector problems. These two problems make
up the majority of promising post-quantum
cryptography papers, and in this paper we will be
examining the graph isomorphism problem more
closely.

The graph isomorphism problem tries to de-
termine whether two finite graphs are isomophic.
This problem does not have a general polyno-
mial time solution yet it two problems: it is
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NP-intermediate nature and contains several sub-
classes of the problem that can be solved in poly-
nomial time. In the same vein, when elliptic
curve isogenies were first being considered for
use in cryptography all cases of elliptic curve
use were thought to be secure, but when Childs,
Jao, and Soukharev created an quantum algorithm
for computing normal elliptic curve isogenies the
general case had to be reconsidered. This began
the use of supersingular elliptics curves, whose
properties make finding isogenies more difficult.

2. Elliptic Curves
To understand the use a elliptic curves and

supersingular elliptic curves in post-quantum
cryptography, a general examination of their
characteristics should be made:
Elliptic Curves
An Elliptic Curve can be defined as:
A set of solutions (x,y) over a finite field k to an
equation of the form
y2 + a1xy + a3y = x3 + a2x

2 + a4x+ a6
or also commonly in the Weierstrass form
y2 = x3 + ax+ b
These curves form groupsG = (x, y) ∈ k : (x, y)
is a point on E the operation over the group is
elliptic curve point addition which falls into
normal point addition and point doubling.
Normal Point Addition:
Addition of two points is performed by construct-
ing the line between the two points and finding
its intersection with the curve.
R = P +Q =

(
px
py

)
+
(
qx
qy

)
s = py−qy

px−qx
rx = s2 − px − qx
ry = s(px − rx)− py
If the line is horizontal and there is no in-
tersection, a point at ∞ is defined, such that
A+B =∞
Point Doubling:

Doubling doubling produces a tangent line at the
point given; the horizontal reflection of where the
tangent intersects the curve is the doubled value.

R = P + P
s = 3p2x+a

2py

rx = s2 − 2px
ry = s(px − rx)− py

Supersingular Elliptic Curves
Broadly Supersingular Elliptic Curves are a class
of ECs with large endomorphism rings. There are
many other ways to define them:
P-torsion points of the curve E is trivial, where
the characteristic of k = p
E : y2 = x(x − 1)(x−) is supersingular iff is a

root of f(x) =
∑ p−1

2
i=0 (ni)

2xi

If the curve E is written as a cubic homogeneous
f(x, y, z) in the projective plane, then E is
supersingular iff the coefficient of (xyz)p−1 in
f(x, y, z)p−1 is zero.

3. Isogenies
An isongeny is a morphism or rational map

that preserves identity denoted as ϕ : E1 → E2

(though this definition seems to vary, and be
a point of contention). So a simple example
would be given E1 you could find an isogeny by
multiplying by [m].

Finding an isogeny is not that difficult, but de-
termining if two isogenies are equivalent, f1 :
E1 → E2 versus f2 : E1 → E ′2, complicates
matters.

The standard way of calculating their equiva-
lency is by their kernals. The kernel is the set of
geometric points P ∈ E1 such that f(P ) = 0E2

The group of separable isogenies, defined as:
Let ϕ : E → E ′ be an isogeny, and let r1(x)

be the x-coordinate map. If the derivative of the
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x-coordinate map r′1(x) is not 0 then ϕ is separa-
ble. Seperable isogenies’ kernal size and degree
are the same, where the degree is the degree as
a rational map. Isongenies with a degree greater
than 1, can factor into isogenies of a prime degree
over Fq.

You can also find isongenies that map to them-
selves, known as Endomorphisms: (ϕ+ψ)(P ) =
ϕ(P ) + ψ(P )
Taking the endomorphism of an elliptic curve can
help us categorize it. If End(E/k) ' an order O
in quaternion algebra over Q, than E/k is a su-
persingular elliptic curve.

4. Using Elliptic Curve Isogenies
Using supersingular elliptic curves, the hard

problem that is used for post-quantum cryptogra-
phy is givenE1 andE2, compute isongeny. In this
case the isongeny is a surjective quotient map.

Below is an intuitive diagram of how a diffie-
hallman exchange would work using elliptic
curve isogenies:

However the diagram does not tell the entire
story. When computing the second isogeny more
information needs to be exchanged.
In order to compute (E/RB)/RA = E/(RB, RA)
you need to use Velu’s formula which computes
E → E/G :
X(P ) = x(P ) +

∑
Q∈G/OE

(x(P +Q)− x(Q))
Y (P ) = y(P ) +

∑
Q∈G/OE

(y(P +Q)− y(Q))
However this requires knowledge of the subgroup
of the domain curve, from the sender. This has

to again be done using a DHP like exchange
where a point PA and QA are chosen to create,
RA = mAPA + nAQA

The sender gives the receiver φB(PA) and
φB(QA) so the receiver can compute
mAφB(PA) + nAφB(QA) =
φB(mAPA + nAQA) = φB(RA)

The fastest known implementation of this
algorithm was created by Microsoft in April of
2016. As the field of Elliptic Curve Isogeny
Cryptography matures, we are sure to see more
efficient speed and storage. Just this past January,
researchers created a hardware implementation
of isogeny-based cryptography for supersingular
isogeny Diffie-Hellman, and more the field is ripe
for more advances.
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