
Diffie-Hellman Key Exchange: A Comparison

Sharon Levy and Jenna Cryan
{sharonlevy,jrcryan}@cs.ucsb.edu

Department of Computer Science
University of California Santa Barbara

June 1, 2017

Abstract

The Diffie-Hellman Key Exchange is a Public Key Cryptography protocol
that enables users to safely create and transmit encryption keys over the net-
work. This protocol uses modular exponentiation, which can be implemented in
several ways. In our paper, we will describe the Diffie-Hellman Key Exchange
and implement it on the Google Cloud Platform. The modular exponentiation
will be computed using the binary (m-ary), factor, and power tree methods. We
will then compare the addition chains for each of these methods and evaluate
our results.

1 Introduction

Security remains a critical issue in technology going forward, as the number of Inter-
net connected devices continues to grow and companies increasingly rely on digital
infrastructure. The massive amounts of information stored and transmitted everyday
must be properly protected against malicious actors. A recent increase in Internet of
Things devices has dramatically increased the security vulnerabilities. Already, sig-
nificant DDoS attacks on IoT connected devices have shown how fragile our Internet
infrastructure is by taking down key Internet connectivity points for hours [7], they
must reduce the cryptographic overhead to ensure secure communication channels
efficiently [4].

Public Key Cryptography has historically been used to help secure exchanges of
critical information [10], allowing two parties to securely communicate a shared secret
key. As part of the protocol, each party must perform two computations of modular
exponentiation. Through a series of improvements, modular exponentiation can be-
come incredibly more efficient in terms of number of multiplications performed [6].
In this paper, we will explore three different ways to perform these computations:
Power Tree Method, Factor Method, and Binary (m-ary) Method. We will show
that the Power Tree and Factor methods are too inefficient for modern day secure
cryptography protocols, which require 2048 bit keys.

1

2 Diffie-Hellman Key Exchange

To collectively communicate the shared secret between two parties, e.g., Alice and
Bob, they must:

• First, agree on a prime p and generator g. These values do not need to remain
secret for the protocol to remain secure against outside observers. Although, g
must be a primitive element of Z∗

p .[2]

• Alice and Bob select their private keys, such that, a, b ∈ Z∗
p . These values

should have lengths proportional to p and g

• Alice computes ga (mod p) and sends the result s to Bob.

• Bob computes gb (mod p) and sends the result r to Alice.

• Using Bob’s public key r, Alice computes ra (mod p) = (gb)a (mod p)

• Using Alice’s public key s, Bob computes sb (mod p) = (ga)b (mod p)

• At this point, Alice and Bob should have computed the same final value, which
is their shared secret key.

Now, even though the eavesdropper may know the prime p, generator g, and even
the intermediary keys r and s, it would still be a very difficult problem to backwards
compute a or b, which is needed to compute the final secret key. This way, Alice and
Bob can use this shared key to, for example, encrypt and decrypt messages to ensure
secure communication over a public channel.

2.1 Security

The security behind this protocol relies on using a large enough group order to ensure
long enough key lengths, and the Discrete Logarithm Problem. The Discrete Loga-
rithm Problem (DLP) relies on the difficulty in computing the private keys, a or b.
It simply states that while it is easy to compute x in x = ga (mod p), given g, a, and
p, it is not easy to compute a in x = ga (mod p), given g, x, and p. Essentially, the
DLP describes the hardness of solving a one-way function.[9] Given this definition,
one way to break Diffie-Hellman is to compute either a or b, since the shared secret
key is equal to gab mod n. If the attacker can compute one of the two values, he or
she can use the public key of the other value as a base to compute the shared secret
key.

3 Modular Exponentiation

For Alice and Bob to compute their shared secret key, they must perform 2 iterations
of modular exponentiation. Although they use different private keys, the resulting
shared key will still result in the same outcome.

2

3.1 Addition Chains

The number of multiplications involved in modular exponentiation can be represented
by an Addition Chain. Each link in an addition chain represents an addition with
some previous value in the chain. A variety of methods have been developed to
calculate the shortest addition chains, to simplify the calculations involved in modular
exponentiation. In the problem of calculating Md mod n, addition chains can help
efficiently calculate the number of multiplications and squarings to generate d. The
goal is to achieve the fewest number of multiplications and squarings in order to use
the lowest amount of compute power. However, finding the shortest addition chain
is an NP-Complete problem. Although it falls within this category, the upper and
lower bounds of the length of the shortest addition chain have been computed to be
blog2 dc + H(d) - 1 and log2 d + log2H(d) - 2.13, respectively, where H(d) is the
Hamming weight of d. The upper limit uses the length of the binary method as a
worst case scenario.[6] Here, we focus on 3 methods: Power Tree, Factor, and Binary.
We will further explore the last method to evaluate optimization possibilities.

3.2 Power Tree Method

We first implemented the Power Tree method. To find the shortest addition chain,
the power tree starts with a single node, 1. From there, the levels are scanned in a
breadth-first manner. Additional levels are created by adding together previous nodes
together along the same path to generate new (non-duplicate) nodes below. Once
fully constructed, each path to a node should be the shortest chain for that exponent
value. While this method may be useful for small exponents, its exponential space
constraints make it unreasonable to use for large numbers.

function Power Tree
input: M,d, n, tree, q, visited
output: S = Md mod n
1: while q not empty and d not in tree do
2: S ← q.pop
3: if S not in visited then
3a: visited.add(S)
4: for node in path do
4a: if S + node not in tree then
4b: path.append(S + node)
4c: tree.add(S + node)
4d: q.append(S + node)
5: return S

3.3 Factor Method

The Factor method uses factorization of the exponent to break down the problem
recursively until the exponent becomes small enough that the Power Tree method

3

can then be utilized. However, this method relies on finding the smallest prime factor
of the exponent at each iteration, which becomes too costly for large numbers.[8]

function Factor
input: M,d, n
output: S = Md mod n
1: if d = 1 then return M mod n
2: else if d = 2 then return M2 mod n
3: else if d is prime then return factor(M,d− 1, n) ∗M mod n
4: else
4a: x = smallest prime factor of d
4b: y = d / x
4c: return factor(factor(M,x, n), y, n) mod n

3.4 Binary Method

The Binary method iterates over each bit of the exponent and squares the value,
until all bits have been iterated over. This method performs reasonably well for
larger numbers, but the addition chains are non-optimal compared to those found
through the Power Tree or Factor methods. The number of multiplications in the
worst case for this method is 2blog dc, where d is the exponent to be computed.[3]

function Binary
input: M,d, n
output: S = Md mod n
1: if dk−1 = 1 then S ←M else S ← 1
2: for i = k − 2 downto 0
2a: S ← S · S (mod n)
2b: if di = 1 then S ← S ·M (mod n)
3: return S

3.5 m-ary Method

The Binary method can be further generalized to scan multiple bits at a time. While
this increases the preprocessing requirements, it may reduce the length of the addition
chains for larger numbers. The worst case number of multiplications is 2k - 2 + (1 +
1/k)blog dc, where m = 2k.[3]

function m-ary
input: M,d, n
output: S = Md mod n
1: Compute and store Mw (mod n) for all w = 2, 3, 4, ...,m− 1.
2: Decompose d into r-bit words Fi for i = 0, 1, 2, ..., k − 1.
3: S ←MFk−1 (mod n)

4

4: for i = k − 2 downto 0
4a: S ← S2r (mod n)
4b: if Fi 6= 0 then S ← S ·MFi (mod n)
5: return S

3.5.1 Quaternary Method

When scanning 2 bits at a time, we call this the Quaternary Method of exponentiation.
This method improves upon the Binary method, but remains lacking in finding an
optimal solution.

3.5.2 Octal Method

Similar to the Quaternary Method, the Octal Method scans 3 bits at a time. While
this also improves further upon the Quaternary method, the shortest chains could
still be improved.

4 Implementation

To evaluate these different methods, we tested on varying length keys, until the com-
putations became too costly. We tested using virtual machines on Google Cloud
Platform to use the most computing power possible. In particular, we chose a ma-
chine with high CPU tolerance to perform the computations as fast as possible. The
machine we used ran CentOS on 16 virtual CPUs, with 14.4GB of memory. However,
even with a high CPU machine running only this code, we still ran into bottlenecks as
the numbers became large (> 30 bits). We implemented the methods using Python,
which does not parallelize efficiently, so the multiple CPUs did not help and the bot-
tlenecks grew exponentially. Specifically, the major bottleneck we found related to
needing to iterate through very large numbers to find the smallest prime factor. For
large numbers, this operation became too time-consuming. For the sake of space, we
have omitted the raw data used for testing, but each method was run on the same
combinations of g, p, a, and b. The graphs below show our results for each method.
Specifically, the graphs compare key length (in bits) to the shortest addition chain
we found.

5

4.1 Results

As seen in the graphs above, the Binary Method performs the worst for the five
largest sets of exponents a and b. Meanwhile, Octal and Quaternary started off with
larger addition chains in the smallest set and ended up with smaller addition chains
in the later sets. The Factor and Power Tree Methods were not able to compute
addition chains for the larger sets of a and b, and this will be discussed in the section
below. It is clear that the Octal Method creates the shortest addition chains. This

6

is due to the preprocessing that occurs in the beginning of the method, so that M0 -
M7 are already calculated when iterating over the blocks of bits instead of iterating
bit by bit.

4.2 Limitations

We were able to run the Diffie-Hellman Key Exchange on all values of a and b for each
of the m-ary methods. However, the Power Tree method was only able to compute
the public keys for the first two sets of a and b. Since the Power Tree method
continuously adds numbers to the tree, it essentially calculates addition chains for
all these numbers. When calculating an addition chain for a large number using this
method, it must first process the addition chains for all of the numbers that come
before it in the tree. Doing this requires a large amount of computing power and
thus, we were not able to complete this for the last five sets of exponents in our table.

The Factor Method was able to compute the first three sets of a and b, as opposed
to only the first two for Power Tree. The problem that arose when using the Factor
Method was that it called two functions, one to find whether the current exponent is
a prime number and another to find the current exponent’s smallest prime factor. In
our implementation, we determined whether a number was prime by iterating through
all the numbers up to its square root and dividing those numbers to see if they were
factors of the exponent. The same was done to determine the smallest prime factor of
a number. When these functions were called with large exponents, they took a long
time to iterate over all the numbers and we were not able to get results for the last
4 sets of a and b. Being able to solve the smallest prime factor function efficiently
was not possible as it would lead to solving the prime factorization problem, which
is what the Public Key protocol RSA is based on.[8]

5 Conclusion

While most public key encryption nowadays uses RSA because of known security vul-
nerabilities [1], Diffie-Hellman remains an important protocol for sharing a private key
over public channels. As encryption cracking algorithms continue to advance, efficient
methods for computing modular exponentiation must progress as well. Modern stan-
dards require the order of the group to be at least 2048 bits to maintain security [5].
As we have shown, not all methods for exponentiation could come remotely close to
effectively computing with values so large, which puts security in serious question.

The results of our implementation show that Factor and Power Tree methods are
useful for modular exponentiation with small exponents. When using large exponents,
as in the case of secure Diffie-Hellman, it is better to use the Octal or even Quaternary
Method to calculate the public and private keys.

7

References

[1] David Adrian, Karthikeyan Bhargavan, Zakir Durumeric, Pierrick Gaudry,
Matthew Green, J Alex Halderman, Nadia Heninger, Drew Springall, Emmanuel
Thomé, Luke Valenta, et al. Imperfect forward secrecy: How diffie-hellman fails
in practice. In Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, pages 5–17. ACM, 2015.

[2] Johannes Buchmann. Introduction to Cryptography. Springer-Verlag New York,
2004.

[3] Daniel M. Gordon. A survey of fast exponentiation methods. Technical report,
Center for Communications Research, 1997.

[4] Qi Jing, Athanasios V Vasilakos, Jiafu Wan, Jingwei Lu, and Dechao Qiu. Se-
curity of the internet of things: perspectives and challenges. Wireless Networks,
20(8):2481–2501, 2014.

[5] Tero Kivinen. More modular exponential (modp) diffie-hellman groups for inter-
net key exchange (ike). 2003.

[6] Cetin Kaya Koc. High-speed rsa implementation. Technical report, Technical
Report, RSA Laboratories, 1994.

[7] Yungee Lee, Wangkwang Lee, Giwon Shin, and Kyungbaek Kim. Assessing the
impact of dos attacks on iot gateway. In Advanced Multimedia and Ubiquitous
Engineering, pages 252–257. Springer, 2017.

[8] Martin Otto. Brauer addition-subtraction chains. Technical report, Universitat
Paderborn, 2001.

[9] C. Pomerance and S. Goldwasser. Cryptology and Computational Number The-
ory. American Mathematical Society, 1989.

[10] Arto Salomaa. Public-key cryptography. Springer Science & Business Media,
2013.

8

