# Post-Quantum Crypto Adventure Introduction to Lattice-Based Cryptography

### <u>Presenter:</u> Pedro M. Sosa

### Roadmap

Post-Quantum Cryptography

> Lattice-Based Crypto

R-LWE Diffie Hellman

LWE & R-LWE

# The Upcoming Crypto-Apocalypse

The basis of current cryptographic schemes

**Factoring** 

- Given n; compute p:  $\mathbf{n} = \mathbf{p} \cdot \mathbf{q}$ 

Discrete Logarithm

- Given p, g, y; compute x:  $y = g^x \pmod{p}$ 

Classic Computers breaking factorization:



.......

........

$$e^{1.9(logN)^{1/3}(loglogN)^{2/3}}$$

#### The Problem



Quantum Computers breaking factorization:



.......

 $(\log N)^{2}(\log \log N)(\log \log \log N)$ 

### The Push for Post-Quantum

Governments, Companies, Organizations all want to migrate as soon as possible...

# Microsoft



National Institute of Standards and Technology



# Post-Quantum Cryptography

#### 5 Main Approaches:

- Lattice-based · · ·
- Hash-based
- Code-based
- Multivariate
- Supersingular Elliptic Curve Isogeny

.....> Lattice-based Cryptography

- Lots of history
- Provably secure
- Security based on worst-case prob.
- Efficient (Comp./Comm.)
- Versatile
- Promising standardization candidates

# The Current State of Lattice Based Crypto

- Key Exchanges:
  - R-LWE, NTRU, New Hope
- Digital Signatures:
  - NTRUSign, TESLA, BLISS
- Authenticated Key Exchanges
  - Del Pino et. al & me :)
- Hash Functions
  - SWIFFT, LASH
- Encryption Schemes
  - Prest's IBE-Scheme, NTRUEncrypt

| Cverview                                                                                                                                                                                                                                                                                                                                                                                           | Security Overview                                                                                                                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Main Origin  https://play.google.com Secure Origins  https://www.gstatic.com https://ax.googleapis.com https://lb3.googleusercontent.c https://lb6.googleusercontent.c https://sl.gstatic.com https://sl.gstatic.com https://opis.google.com https://books.google.com https://books.google.com https://looks.google.com https://looks.google.com https://looks.google.com https://looks.google.com | This page is secure (valid HTTPS).                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>Valid Certificate</li> <li>The connection to this site is using a valid, trusted server certificate.</li> <li>View certificate</li> </ul>                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>Secure Connection</li> <li>The connection to this site is encrypted and authenticated using a strong protocol (TLS 1.2), a strong key exchange (CECPQ_ECDSA), and a strong cipher (CHACHA20_POLY1305).</li> </ul> |
|                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>Secure Resources</li> <li>All resources on this page are served securely.</li> </ul>                                                                                                                              |

Google testing Lattice-based PQC KEX

# Lattice Based Cryptography

Lattice L(B) = Set of all integer combinations of n linearly independent vectors  $B=\{b_1, \dots, b_n\}$  in  $\mathbb{R}^n$ .



# Hard Problems

#### **Shortest Vector Problem**

Given a basis B, find the shortest vector.



#### **Chosen Vector Problem:**

Given a basis B and a vector v, find the vector in L closest to v.







#### Learning With Errors (LWE) Z<sub>13</sub><sup>7x4</sup> 4 x 1 g \* Find the secret! Way Harder Now!

This is LWE problem







# The problem with LWE

In reality we need large matrixes with large coefficients

Eg. Z<sub>12289</sub><sup>512 x 512</sup> = 512\*512\*14 bits = **458 KiB !!!** 

Too Big...



...

# Ring Learning with Errors

#### We need Order!

- Each row is the Cyclic shift of the row above
- Special wrapping rule: x wraps to -x mod 13



# Ring Learning with Errors



 $Z_{13}[x] / < x^4 + 1 >$ 

**Decision Ring-LWE problem:** Given green can you distinguish yellow from random?

Hardness: Can be reduced to SIVP.

# Ring-LWE Diffie Hellman Key Exchange

 $a \leftarrow R_q = Z_q[x] / \langle x^n + 1 \rangle$ 



# Rounding

Bob sends extra information





# Ring-LWE Diffie Hellman Key Exchange

 $a \leftarrow R_q = Z_q[x] / \langle x^n + 1 \rangle$ 



 $uround(s \cdot b') = uround(b \cdot s')$ 

### Conclusion

- We need PQC, yet this field is still young and expanding. Tons of research to do!
- Lattice-based Cryptography is among it's **most promising approaches**
- R-LWE Python reference code available at: **github.com/pmsosa/rlwe-kex**



# Some Other Fantastic Talks

- Winter School on Cryptography: Introduction to Lattices Oded Regev
  - <u>https://www.youtube.com/watch?v=4ulHOV8iLls</u>
- Post-Quantum Key Exchange for the TLS Protocol from the Ring Learning with Errors Problem - Douglas Stebila
  - <u>https://www.youtube.com/watch?v=BCmSzzQ2ges</u>
- Lattice-Based Cryptography Chris Peikert
  - <a href="https://www.youtube.com/watch?v=DmemT\_OPn2Q">https://www.youtube.com/watch?v=DmemT\_OPn2Q</a>