
Bit Influence Disparity in Binary Addition

Kevin Burk

June 18, 2018

Abstract

When adding two binary numbers, the least significant input bits have
the potential to trigger cascading carries, influencing every bit of the out-
put, while the most significant input bits will only ever influence the most
significant bit of the output. This bit influence disparity seems to conflict
with the cryptographic idea that a number can be completely obscured
by addition with a uniform random value, though in fact the uniform
randomness of the mask does ensure this property. In this paper, I inves-
tigate what information, if any, is leaked via bit influence disparity when
obscuring a number by addition with a random mask. I also discuss a
method of equalizing all input bits’ influence with carry wraparound, and
demonstrate that it is undesirable and unnecessary.

1 Introduction
In cryptography, we often find ourselves facing a simple but fundamental prob-
lem: We have two n-bit strings. One is sensitive data. One is random bits. How
can we use the random bits to obscure the sensitive data so that it is mean-
ingless to other observers, but still recoverable by anyone in possession of the
random bits?

The first common approach is to XOR the two together. This completely
obscures the sensitive bits, provided the random bits were sufficiently random,
but they are still recoverable. XOR is its own inverse, so anyone who knows the
random bits can repeat the operation and recover the original data.

The other common approach is to treat the two strings as numbers and add
them modulo 2n. Again, they are obscured, but recoverable - in this case via
subtraction.

In this paper, I examine the “intuitive security” of both of these approaches,
with an emphasis on how, in the complicated case of addition, intuition can be
misleading.

1.1 The Intuitive Security of XOR
Given a bit string d and a randommaskm of the same length, the value e = d⊕m
is a simple but effective encryption. Provided that each bit of m has an equal

1

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

Output Bit

In
flu

en
ce

Input Bit 0
Input Bit 7

Figure 1: The probability of changing each output bit when toggling a specific
input bit during an eight-bit XOR operation. Each input bit affects exactly one
bit of the output.

probability of being 0 or 1, e reveals nothing about d to an observer that doesn’t
know m. It is possible that any bit in e is the same as the original bit in d (that
is, the corresponding bit in m was 0, so it was left unchanged), but it is equally
likely that that bit in m was 1, and that the bit in e is the opposite of the
original.1

It is also obvious that each input bit affects exactly one output bit, as shown
in Figure 1. This is a nice property, as we don’t have to worry about any input
bit having a disproportionate influence on the output.

1.2 The Intuitive Security of Addition
Binary addition can be used in the same way. Given n-bit string d and random
mask m of the same length, interpret them as integers in the range [0, 2n − 1]
and compute e = d + m mod 2n. As long as m was selected uniformly at
random from all possible values, then e is uniformly distributed as well. All
possible values of d appear equally likely to an observer that sees e but does not
know m.

This conception of addition - thinking of it as an operation in an additive
group - gives us a sense that it is secure. When thinking about it on the level of
individual bits, however, this is no longer the case; in fact, the intuition is that
it is less secure.

Consider the mechanics of carrying: the possibility of carrying means that
1This can be shown mathematically; see Section 3.1.

2

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

Output Bit

In
flu

en
ce

Input Bit 0
Input Bit 7

Figure 2: The probability of changing each output bit when toggling a spe-
cific input bit during eight-bit addition. Assuming all input bits are uniformly
random gives the 50% carry rate shown here; see Section 5.1 for details.

one bit can “bleed over” and influence others, and each bit has a different po-
tential to do so. Toggling the least significant bit of one of the inputs could
trigger a carry, influencing the next least significant bit, potentially triggering
another carry, and so on. But toggling the most significant bit of an input can
only influence the most significant bit of the output.

This is illustrated in Figure 2. Toggling the most significant bit of an input
will always change exactly one bit of the output, but toggling the least significant
bit will change, on average, two output bits. This no longer has the satisfying
property of equal influence that we saw with XOR. Suddenly, some bits seem
twice as important as others.

2 Carry Wraparound
The instinctive reaction to this disparity is to do something about it, and the
obvious way to equalize the influence of the higher bits is to let carries wrap
around, back to the bits of lowest significance. In most architectures this can
be done by finding every add instruction x = add(a, b) and inserting an add-
with-carry instruction x = adc(x, 0) immediately after it.

A single add-with-carry instruction is sufficient. Since the original add in-
struction does not have the initial carry bit set, the first carry that occurred
did so when both input bits were set and the carry flag was not, guaranteeing
a zero in the output that can catch the carry bit that wraps around. Thus the
adc instruction can never produce an overflow.

3

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

Output Bit

In
flu

en
ce

Input Bit 0
Input Bit 7

Figure 3: The probability of changing each output bit when toggling a specific
input bit during eight-bit addition with carry wraparound.

As seen in Figure 3, the “problem” with addition is now solved. All input
bits have the same expected influence on the output. But unfortunately, carry
wraparound comes with multiple problems of its own.

2.1 Problems with Carry Wraparound
The obvious problem is performance. Addition just became twice as expensive
on standard hardware. The prediction circuitry from a carry lookahead adder
could likely be used to reduce this overhead significantly, but that would require
custom hardware.

The more serious problem, though, is that addition with carry wraparound is
no longer a permutation on its domain. Consider the eight-bit numbers [0, 255]
and some value m in that range. As with normal addition, 0+m = m. But with
carry wraparound, 255+m = m as well.2 If addition with carry wraparound is
used to encrypt n-bit strings, then the encryptions of 0 and 2n−1 are identical.
Such a scheme must either restrict its possible inputs or accept that decryption
may fail. The former solution is a major devolution for a scheme that could pre-
viously accept any bit string of the desired length, and the latter is undesirable
in any scheme. Addition with carry wraparound is not recommended.

2Provided that m 6= 0, which ensures that an overflow does occur.

4

3 Addition Reexamined
Given that this “fix” for a potential problem ended up causing obvious problems,
let’s take a different approach. If we can show that the output of addition is
uniformly random despite the varying contributions of its input bits then we
can show that the intuition is faulty, and that no adjustments need be made.

We can do this with a more detailed model of addition - specifically, of the
digital circuit with which addition is implemented.

3.1 Probabilistic Circuits
Instead of considering bits to be either exactly zero or exactly one, we can
represent a bit as the probability that that bit is one. Zero and one retain their
exact values, but we can represent random bits as well. A bit with value 0.6,
for example, can be expected to result in one 60% of the time it is sampled.

We can then calculate the expected outputs of the standard logic gates as
functions of the probabilities that their inputs are set:3

¬p = 1− p

p ∧ q = pq

p ∨ q = p+ q − pq

p⊕ q = p+ q − 2pq

With these equations we can start to make statements about the behavior
of circuits. For example, it’s easy to show that XORing a value with a uniform
random mask obscures that value completely:

m = 1
2

d⊕m = d+m− 2dm

= d+ 1
2 − 2d 1

2

= d+ 1
2 − d

= 1
2

3.2 Modeling an Adder
We can use the same approach to analyze binary addition. Since all correct
adders will return the same result given the same inputs, it suffices to model
the simplest circuit: the ripple carry adder.

A ripple carry adder consists of a chain of one-bit adders that operate serially.
Each one-bit adder takes two input bits, a and b, and an input carry bit, c. It
calculates an output value, v, which is returned as part of the ripple carry

3See Section 5.2 for more on how these equations are derived.

5

#! /usr/bin/env ruby
a = (ARGV [0] || 0.5). to_f
b = (ARGV [1] || 0.5). to_f
c = 0

printf "a = %8.6f\nb = %8.6f\n\n", a, b
printf " Value Carry\n"
printf " -|--------|--------\n"

8.times do |i|
v = a + b + c - 2*a*b - 2*a*c - 2*b*c + 4*a*b*c
c = a*b + a*c + b*c - a*a*b*c - a*b*b*c - a*b*c*c + a*a*b*b*c*c
printf "%i %8.6f %8.6f\n", i, v, c

end

Figure 4: Ruby code that simulates an eight-bit ripple carry adder. This pro-
gram was used to generate the data plotted in Figures 5 and 6. For simplicity,
this code assumes that all bits of one input have a probability a of being set,
and that the bits of the other all have a probability b of being set.

adder’s output, and an output carry bit, c′, which is passed to the next one-bit
adder in the chain.

The output values can be found with simple circuits. The output value v
is set when an odd number of the three input bits were set; this can be found
with XORs. The output carry bit c′ is set when at least two of the three input
bits were set; this can be found with ANDs and ORs:

v = a⊕ b⊕ c

c′ = (a ∧ b) ∨ (a ∧ c) ∨ (b ∧ c)

Rewriting these boolean equations as their probabilistic versions gives, after
a bit of algebraic simplification:

v = a+ b+ c− 2ab− 2ac− 2bc+ 4abc

c′ = ab+ ac+ bc− a2bc− ab2c− abc2 + a2b2c2

These equations can be used to simulate a ripple carry adder. See Figure 4
for a working example.

Running this simulation with various input bit probabilities, we can observe
the probability of producing a carry at each one-bit addition. These probabilities
are shown in Figure 5, and they seem to confirm that pessimistic intuition: these
probabilities are not uniform, even when a = b = 1

2 . In fact, the most significant

6

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

Internal Carry Bit

P
ro
ba

bi
lit
y

a = 0.2; b = 0.2
a = 0.2; b = 0.5
a = 0.2; b = 0.8
a = 0.5; b = 0.5
a = 0.5; b = 0.8
a = 0.8; b = 0.8

Figure 5: The probability of each internal carry bit being set during a ripple
carry add, based on the probabilities on input bits a and b being set. Note that
this is an increasing function for all values of a and b.

bits are always the most likely to carry, regardless of the values of a and b.4
Fortunately, these carry bits are only ever used internally by the adder.5 To

show a weakness in addition, we must show a weakness observable in the output
bits, and these show a very different behavior.

Figure 6 shows the probability of getting a one at each output bit from
variously distributed inputs. Here, as long as at least one input was uniformly
random, the uniform distribution is preserved. It doesn’t matter if a bit is being
flipped with very high probability by a carry; if it is also being flipped with 50%
probability by a bit from the random mask it is still completely obscured.

This property can also be derived from the equation for v:

b = 1
2

v = a+ b+ c− 2ab− 2ac− 2bc+ 4abc

= a+ 1
2 + c− 2a 1

2 − 2ac− 2 1
2c+ 4a 1

2c

= a+ 1
2 + c− a− 2ac− c+ 2ac

= 1
2

Ultimately, the obscuring properties of XOR ensure that addition is secure
despite the asymmetries introduced by carrying. And conveniently, an integer

4A few degenerate cases are not shown. If both a and b are one, a carry occurs at every
step; if either a or b is zero then no carries occur.

5Or, in the case of the most significant carry bit, never used at all.

7

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

Output Bit

P
ro
ba

bi
lit
y a = 0.2; b = 0.2

a = 0.2; b = 0.8
a = 0.8; b = 0.8
a or b = 0.5

Figure 6: The probability of each output bit v being set after addition, based
on the probabilities of input bits a and b being set. If either a or b is set with
probability 1

2 then the probability of v being set is also exactly 1
2 ; only one line

is shown for this case.

selected uniformly at random modulo 2n will have each bit set with exactly
50% probability. The intuitive security of the additive group interpretation
from Section 1.2 and the bitwise security calculated above are equivalent.

4 Conclusions
Binary addition, with the asymmetries introduced by carrying, lacks the simple,
intuitive security of XOR. A mathematical treatment, however, shows that there
are no issues in practice; in fact, attempts to fix such perceived problems, as
seen with carry wraparound, can introduce more severe flaws than those they
were intended to solve.

Addition, then, provides an excellent example of how intuitions can fail
us. While they may serve as useful launching points, they should always be
rigorously verified.

8

5 Notes

5.1 On the Influence Graphs
The influence graphs in Section 1 show the probability that flipping a specified
input bit will result in a flip of each output bit.

Since each each output bit is calculated as the parity of the input bits,6
flipping an input bit is guaranteed to change the corresponding output bit,
hence the probability of 100%.

If flipping an input bit triggers a carry, the next output bit is guaranteed
to be flipped by the same logic, but this needs to be multiplied by the proba-
bility of carrying. For these graphs, I assume that all input bits are uniformly
distributed, and calculate the carry probability of 50% as follows:

For the first bit, toggling an input bit changes the output carry bit exactly
when the other input bit is set; if the other input bit was not set, then there
is no way a carry could occur. The uniform input distribution gives this case a
50% probability.

For all subsequent bits, a cascading carry bit will trigger a subsequent carry
when exactly one of the input bits is set; if neither are set a carry cannot happen,
and if both are set the carry will happen regardless. Again, this case occurs with
50% probability.

5.2 On the Gate Equations
The probabilistic equations for the logic gates from Section 3.1 can be derived
from the probabilities of receiving each input combination.

p q Probability Simplified
T T pq pq
T F p(1− q) p− pq
F T (1− p)q q − pq
F F (1− p)(1− q) 1− p− q + pq

Since all of these cases are mutually exclusive and completely cover the input
space, we can simply sum the probabilities of the cases in which the gate should
return true. For example, XOR should return true when exactly one of its inputs
is true, so:

p⊕ q = p(1− q) + (1− p)q

= (p− pq) + (q − pq)

= p+ q − 2pq

6This is true for both XOR and addition.

9

	Introduction
	The Intuitive Security of XOR
	The Intuitive Security of Addition

	Carry Wraparound
	Problems with Carry Wraparound

	Addition Reexamined
	Probabilistic Circuits
	Modeling an Adder

	Conclusions
	Notes
	On the Influence Graphs
	On the Gate Equations

