Perceived Randomness: Pseudo-Random Number
Generators & Human Interpretation

Kyle Carson
kylecarson@cs.ucsb.edu
Department of Computer Science
University of California Santa Barbara

June 17, 2017

Abstract

Random number generators represent a core building block within cryptog-
raphy, in some cases forming the basis of software and hardware encryption.
While true randomness requires specially designed hardware, many software
implementations, known ”pseudo-random” or ”deterministic” number gener-
ators, exist. From efficiency of computation to the level of precision, these
software-implemented algorithms differ along many vectors. In applied cryp-
tography and beyond, there exist instances where humans directly interacting
with the results of these generators may interpret them with their own concept
of what is considered random. In this paper, we compare various DRNGs in
terms of multiple quality metrics. As an additional exercise, we analyze the
shortcomings of these algorithms against human interpretation, and design a
method which introduces various types of biasing to these generators with the
intent of improving the ”perceived randomness”.

1 Introduction

While many deterministic number generators, or "DRNGs”, share a basis in modular
arithmetic of primes, the finer details of their implementation tend to play a cru-
cial role in their overall performance. Contrary to ”true” random number generators
which are designed at the hardware level around some source of classical or quan-
tum physical entropy, the randomness of DRNGs is backed by certain assumptions
about the complexity or irreversible nature of the building blocks used to form the
algorithms.

For a DRNG algorithm to be considered for all intents and purposes cryptograph-
ically secure, there exists a general set of properties and behaviors that need to be
met. The algorithm should take some k-bit input as a seed, preferably from a source
of true randomness, and should output some n-bit random value. Some part of this

output should then contribute to the seeding of the next call to the algorithm, in a
way that produces a statistically uniform distribution of random values over multiple
calls. Of important note here is that, for a given seed, successive calls to a DRNG
algorithm will produce some statics stream of values. That is, if one were to make
successive calls again to the algorithm with the same initial seed as before, the stream
of values produced will be exactly the same as before.

Some tests used to quantify the algorithms include the polynomial-time statistical
test, which holds if no polynomial-time approach can distinguish the statistical differ-
ence of randomness between a DRNG and a truly random generator with probability
greater than 0.5. Another test, the next-bit test, holds true if for the first m-bits of
some output O, the m+1 bit cannot be predicted with statistical probability greater
than 0.5. Following the basic model for structuring the algorithm and passing these
tests quantifies a DRNG algorithm as cryptographically secure.

2 DRNGs

To attain a more applied understanding of these algorithms as described above, we’ve
implemented seven different approaches including LCG, BBS, RSA, MSRSA, RAB,
PG, and NR. Below we discuss the general principles for each algorithm, and anything
of interest regarding each algorithms’ actual implementation. All of the code was
written in C, and can be found at https://github.com/carsonkk/drngs.

2.1 LCG

Linear Congruential Generator is a simple deterministic algorithm based on modular
arithmetic of the previous output to produce the next output:

Tiy1 = a * x; + b(mod n)

Depending on the values used to seed the algorithm, a sequence of some static window
size is formed, such that once all of the values in the window have been produced,
the sequence will wrap back around and repeat itself. There’s many different options
for what values to set the multiplicative and adder factors too depending on the
application, however going by ANSI standard we set a = 1103515245,b = 12345, n =
0280000000.

2.2 BBS

Blum-Blum-Shub is based on the following equation, where the modulus value is the
multiplication of two large primes:

Tiy1 = 77 (mod n)

n=pxq

Some important properties must hold for the algorithm to behave as desired, including
the seed value and n being co-prime and the primes p, ¢ should both be congruent to
3mod 4. The actual output of the single pass is used to seed the next pass, however
the only information used from an output towards the generated value is a singular
bit of the output. Common bit outputs include even parity, odd parity, and the least
significant bit. Therefore to actually generate a value, one must define some desired
level of precision and run the algorithm that many times to fully form a generated
value.

This pattern of using a single bit and doing multiple passes for some level of
precision is quite common, and ends up being used in all of the following algorithms

2.3 RAB
The Rabin algorithm is a modified form of the the BBS algorithm:

/., = a(mod 1)

Tiyr = (i1 <n/2) 7 @y 0 n— Ty

n=pxq

2.4 RSA

RSA like many of these algorithms is based on the factoring problem, using a much
more involved series of equations to generate its asymmetric results:

Tiy1 = x(mod n)
e € [2,¢ — 1] with ged(e, ¢) =1
¢=@-Dx(g-1)
n=p*q

2.5 MSRSA

A modified version of RSA, in this case referred to as Micali-Schnorr RSA, improves
the overall efficiency of traditional RSA. Simply speaking, this is done by extracting
more bits from each exponentiation, making modifications to both the range for the
exponent e and how the bits for both successive seeding and output are chosen.

2.6 PG

The Power Generator algorithm derives its strength from using primitive elements of
a set for a given primes to perform modular exponentiation. Due to how expensive it
is to compute primitive elements for significantly large primes, we pre-computed a set
of primes and associated primitives and used them to drive the algorithm. While this
greatly increased the efficiency of the computation, a less than desirable result of this

was a significant limit on the range of values that could be generated, particularly
when using smaller primes. A better approach would be to invest the computational
power to generate primitives for large primes and index them for future use, however
this would take a non-trivial amount of time to complete.

Tip1 = g""(mod p)

2.7 NR

The Naor-Reingold algorithm is similar to the Blum-Blum-Shub algorithm in that
tis complexity is dependent upon the inability of an attacker to factor large prime
integers. It uses a few building blocks of its own for it’s computation, including a
binary vectoring function, a modular product function, and a integer vector compar-
ison function. The binary vectoring function (bing(u)) takes two integer parameters,
k and u, and translates the k-least-significant-bits of u into a binary vector array. If
u has less bits than the value of k, the vector array’s most-significant-bits are padded
with 0’s. The modular product function (dot) takes two binary vectors of the same
length and takes the summation of the products of each bit from the two vectors, ap-
plying a modulus of 2 to the result. Finally the vector comparison function (f(A,b))
takes two vector parameters, A which is of integers and length 2k, and b which is
a binary vector of length k. The values in A are in pairs, where the first value is
relevant if the corresponding bit in b is 0, or the second value is relevant if the bit is
1. Thus the function selects each of the relevant integers from A using b, then returns
their summation. These functions are then used in the actual computation of the
generated value:

U= f(Av b)
v = g“(mod n)

Tiy1 = x; dot bing(v)

3 Testing

3.1 Setup

The test setup for measuring the quality of each algorithm was based on two inter-
related metrics: CPU cycles and real-world time of execution. To somewhat normalize
the precision between each algorithm, each one’s random function call uses the same
methodology as LCG in which the upper-order magnitude of bits is used when re-
turning the actual output. The experiment was performed multiple times, varying
the number of successive calls made to each algorithm as outlined below in Table 1
and Table 2.

Calls 10 25 100 250 10000 | 100000 | 1000000

Algo

LCG 0.0 0.0 0.0 0.0 0.0 0.001 0.012
BBS 0.0 0.0 0.0 0.0 0.006 0.064 0.468
RAB 0.0 0.0 0.0 0.0 0.008 0.077 | 0.524
RSA 2.53 6.242 | 26.536 | 70.27 - - -
MSRSA 0.0 0.0 0.0 0.0 0.051 0.275 2.432
PG 0.0 0.0 0.0 0.0 0.033 0.276 2.206
NR 4.89 28.934 | 444.311 | 504.85 - - -

Table 1: Algorithm speed in terms of real-world computation time (seconds)

Calls 10 25 100 250 10000 | 100000 | 1000000
Algo
LCG 1 1 2 3 100 1126 21486
BBS 4 11 41 105 6750 60364 | 453863
RAB 6 14 53 132 8616 68644 | 538605
RSA 2044421 | 7107596 | 25926498 66659430 - - -
MSRSA 41 32 243 607 37529 | 287388 | 2544693
PG 29 55 214 533 37895 | 283791 | 2154358
NR 4177409 | 27015995 | 416989667 | 2652261381 - - -

Table 2: Algorithm speed in terms of CPU cycles

3.2 Results

From the data above we can see a massive disparity in the performance of RSA and
NR compared to the rest of the algorithms. RSA’s inefficiency in the case is do to
the large size of e as a result of the values used to seed the algorithm, requiring each
pass to loop a non-trivial number of times. MSRSA avoids this by using a commonly
agreed upon static value of e, greatly reducing the runtime. The results of PG are also
a bit skewed, as it uses a relatively small index of prime/primitive pairs, where the
primes themselves are quite small. This becomes more evident when using the print
test in the repository and observing the values output by each algorithm side-by-side,
as the resolution of PG’s output is noticeably more limited.

4 BRAND

While each of the aforementioned algorithms strives to produce a uniformly dis-
tributed set of seemingly random variables, they tend to have some shortcomings
when used in applications. The range of values they produce are often limited to
some [0, RAND_MAX), which may be problematic in that both the desired range
size may too big or too small, or the min and max values themselves aren’t ideal. If
a user wants to use one of these algorithms in an applied manner for a range they
control, a naive solution is often something along the lines of:

val = min + rand()%(maxz — min)

The problem with this is it introduces a statistically detectable bias when the modulus
doesn’t perfectly divide into the RAND_MAX of the rand() function.

As a solution to this, we provide brand, a set of wrapper functions around C’s
implementation of rand(), which is fundamentally based upon LCG. With this library,
the default min and max for the range of random values is still 0 and RAND_MAX,
however now the user can set the limits of the range, then use the wrapper functions
to generate a statistically uniform distribution of random variables within the given
range.

The standard flow for using brand is to first seed C’s built in rand() function
however you like; typically this is done through a call to srand(time(NULL)). Next,
the user can use brand’s limit setting functions bsetn(), bsetx(), and bsetnx() to
define the desired range. Next the user simply calls brand() as many times as they
want to get the desired value, and finally when they're done using the library call
beln() to clean up dynamically allocated memory. An additional function brandd() is
also available, which uses brand() internally to generate a random value in the range
[0.0,1.0), with the resolution of the result controlled by the limits set.

With this we now have a well functioning RNG library based on LCG in which
we can control the range, but now we want to add one more piece of functionality.
When it comes to human perception of randomness, people tend to apply their own
biases to what they perceive as random, sometimes without even realizing it. A prime
example of this is the "shuffle” button in any sort of music or media software. The

expectation when listening to a library of music with the shuffle button enabled is
that the software will cycle through the music and select the order to play songs in
at random. If, for example, a user has a library of 1,000 songs being shuffled, and the
RNG function happens to select the same song twice back to back before playing any
other song, the user will likely be annoyed by hearing a repeat, breaking their biased
perception of "randomness”.

Thus brand has an additional wrapper function, brandus(), that aims to produce
a uniquely random stream of values for a given range. For a given range of size N, it
achieves this by allocating an array of length N and setting each value of the array to
be the corresponding value in the range. It then generates a random value within the
range, removing the minimum offset, and uses that as an index into the array to find
the value to return. With that value saved, it then shifts all values beyond the output
value down in the array, effectively removing it from the set of available values, and
decreases the maximum range value by one. Some performance implications of this
include the cache array must be O(NN), an O(1) lookup time as the random value
generated is just an index, and a (N/2) average update time factor.

While this works great for smaller ranges and always ensures a unique stream of
random values for N passes on a range of size N, it has two shortcomings. The first
being that, when all N values have been generated, it’s behavior is that it will reset
the values in the array and begin a new unique stream. This is fine, except that say
in our previous example song 1000 plays at the very end in the first full pass, and the
very beginning in the second full pass, then we’ll have two back-to-back instances of
the same object and will have again broken our notion of ”perceived randomness”.
The second shortcoming is the memory footprint of this method. For any non-trivial
range of values, the method will take up a substantial amount of memory as it needs
to index every single value (at least initially).

Some potential future work for this cached indexing approach could include an
alternative cache method which only caches the most recent X amount of values out
of the total N range, where X << N. Some potential issues with this include lookup
failures and having to do multiple retries, however these could likely be mitigated by
[placing a strict limit on the size of the local cache relative to the overall size of the
range.

5 Conclusion

DRNGs can vary widely in both the approaches they take to achieve cryptographic
security and statistical randomness, and the actual performance that comes as a re-
sult. Some are much more specialized, such as RSA for asymmetric key encryption,
while others are much more broad in their applications, like LCG. Beyond the algo-
rithms themselves, ensuring statistical uniformity in a random distribution where the
range or uniqueness of a value matters is surprisingly non-trivial to implement, how-
ever in applications that interface directly with users or use cases such as procedural
generation, these properties can be invaluable.

