
Analyzing Cryptographic Functions in Java for

JIT-Based Sidechannels

William Eiers

June 20, 2018

Abstract

In the context of runtime systems, security is of utmost importance,
especially for cryptographic functions. One particular class of vulnerabil-
ities, side-channel vulnerabilities, have seen increasing popularity hackers
due to both its subtlety and complexity. Most side-channel attacks take
advantage of the fact that to compute anything, it takes both time and
space to do so. Programs containing side-channel vulnerabilities leak in-
formation through which a potential attacker can learn secret informa-
tion simply by observing the programs execution. Many side-channels
are simply present because of bad-code practices, but others are much
more subtle. In this project, we aim to investigate side-channel vulnera-
bilities arising from Just-In-Time (JIT) compilation of Java cryptographic
functions (such as ModPow), where potential vulnerabilities not originally
present in the source code may arise from JIT optimizations.

1 Introduction and Motivation

Side-channel attacks against software have become more popular in recent years.
Optimizations within core algorithms used in software are implemented by devel-
opers, causing different execution paths to be taken during program execution.
Such optimizations can cause the program to spend longer amounts of time
or use different amounts of memory, depending on the inputs to the program.
This creates a side-channel, a way for an outside agent to possibly learn secret
information using observable differences in resource usage [2, 5, 6]. Developer-
introduced optimizations are just one way a side-channel can be realized. How-
ever, optimizations can be implemented automatically, possibly by a compiler
during code generation. Runtime systems, such as the Java Virtual Machine
(JVM), operate on architecture-independent bytecode by interpreting it into
architecture-dependent code on execution. This causes a huge performance hit,
however, as interpretation is orders-of-magnitute slower than compiled code.
The JVM gets some of this performance back by introducing runtime optimiza-
tions, such as method compilation or compiling paths which are taken multiple
times. These optimizations create a case much similar to the one above, where

1

developers inadverdently induce a side-channel. In cryptographic functions,
such as the Java BigInteger method modPow, a single invocation causes spe-
cific paths to be ”heated up” allowing the JVM to optimize these paths due to
properties of secret values, such as the private exponent. By gaining some per-
formance back, it is possible that the JVM introduces a side-channel, possibly
leaking information about secret values.

1.1 Outline

In this report, we aim to investigate how the Java HotSpot Virtual Machine
affects the presence of side-channels, mainly in the context of cryptographic
functions. Specifically, we explore the effect of Just-In-Time compiler optimiza-
tions with the following questions in mind:

• What is Just-In-Time compilation?

• In what ways can Just-In-Time compilation impact the presence or strength
of side-channels?

• Can cryptographic functions leak information due to JIT optimizations?

All experiments were run on an Intel i5-6600K CPU at 3.5 GHz and 32GB of
RAM, running the KDE Neon Linux 16.04 distribution. We used Java 8 SE,
version 1.8.0 171, Java HotSpot(TM) 64-bit server Virtual Machine.

2 Just-In-Time (JIT) Compilation

The JIT compiler is a runtime component of the Java Virutal Machine which
aims to recover some of the performance lost due to interpretation of architecture-
independent bytecode. Normally, at runtime Java class files are loaded into the
JVM and interpreted line-by-line, causing a huge overhead for each instruction.
When JIT is enabled, the JIT compiler interacts with the JVM and attempts
to compile code it sees as being importance to performance. For example, the
first time a method is invoked, the JIT compiler will compile the method, intro-
ducing a small overhead during the initial invocation. Subsequent calls to the
method will use the compiled bytecode, rather than intepreting the code line-
by-line, boosting performance tremendously. If the method is taken multiple
times, the JIT compiler will attempt to optimize the method even further. The
possible levels of compilation include five tiers, from purely interpreted (L0) to
purely optimized (L4). In this report, we specifically look at the effects of L4
compilation in the context of the modular exponentiation function within the
Java library. Other kinds of optimizations include (but are not limited to):

• Method compilation. Depending on how often a method is called, the
method can be continually recompiled to the next optimization tier.

2

• Branch prediction. Similar to branch-prediction at the micro-architectural
level, the HotSpot virtual machine keeps track of how often different con-
ditional branches are taken, and uses this information to generate more
efficient native code where the more frequent branch appears first.

• Optimistic compilation. As a method gets more rigorously compiled (to-
wards the L4 level), if a particular branch is taken nearly all the time,
HotSpot will optimize away the rarely taken branch, leaving an exception-
like trap in its place.

3 Side-channel Attacks

Side-channels are indirect information channels in which an attacker can learn
secret information just by observing differences in resource consumption through
said channel. Essentially, side-channel attacks take advantage of the fact that
for a program to compute anything useful, it must use some kind of resource
to do so. This can be time, memory, or even power usage. This resource
usage is secondary to the program’s goal: that is, the resource usage is not
the end goal of the program. Additionally, such usage tends to be observable:
programs generally take varying amounts of time to perform a task based on
the inputs received. For example, factoring a small number is computationally
less expensive than factoring large numbers. A side-channel attack occurs when
an attacker can use the observable differences leaked through the side-channel
to learn secret information within the program. We consider one such case in
the next section.

3.1 Insecure Password Checker

Consider the password checking method in Figure 1. This function checks
whether a user-input string guess matches the stored password password, which
we refer to as the secret value. This particular implementation walks character
by character and returns as soon as it finds a mismatch. This optimization, how-
ever, introduces a side-channel in the code, causing the function to be insecure.
Particularly, with no prior knowledge of the secret value, a potential attacker
can leverage a side-channl attack by trying different passwords and measuring
the time taken for the function to return.

To illustrate this timing difference, we assume the secret value (stored word)
is LEET and measure the time it takes for the passwordCheckerInsecure to
return on five different inputs to the JVM. The length of each input is 4, the
same as the secret value. For zero matched characters, time taken was 200ns.
Each matching character increased this value by 200ns, taking 800ns when all
characers matched. While the timing difference is small, it is nonetheless ob-
servable, allowing an attacker to learn the secret password. When JIT was
enabled, no characters matched took 45ns, one character 51ns, two characters
50ns, three characters 60ns, four characters 13617ns. The extreme timing of the
last case is an example of a complex JIT compilation sequence, where either

3

public static boolean passwordCheckerInsecure(final String

guess) {

if (guess.length() != password.length())

return false;

for (int i = 0; i < guess.length(); ++i) {

if (guess.charAt(i) != password.charAt(i)) {

return false;

}

}

return true;

}

Figure 1: Insecure Password checker Code.

the last invocation caused an uncommon trap to be triggered, or a new level of
optimization to be induced.

3.2 Secure Password Checker

Ideally, if the passwordCheckerInsecure function took the same amount of
time regardless of the input, then there would be no observable timing dif-
ferences. To locate such imbalances, developers can use static analysis tench-
niques [4, 7, 1, 3] to analyze program code and fix possible side-channels. This
is the case for the passwordCheckerSecure function in Figure 2. The function
is made secure by making sure all inputs take an equal amount of time to check
the password. However, Just-In-Time compilers introduce various optimization
techniques in the runtime dynamically which may introduce a timing imbalance,
depending on the inputs.

public static boolean passwordCheckerSecure(final String

password, final String guess) {

boolean matched = true;

for (int i = 0; i < password.length(); ++i) {

if (guess.charAt(i) != password.charAt(i)) {

matched = matched & false;

} else {

matched = matched & true;

}

}

return matched;

}

Figure 2: Secure Password checker Code.

Our goal is to show that passwordCheckerSecure function may contain

4

(a) JIT disabled (b) JIT enabled

Figure 3: Timing difference for two different heated paths. Time is in nanosec-
onds.

a JIT-induced side-channel. Our experiment setup considered two executions
paths, one where no characters match, and one where only the first characters
match. We consider the following approach:

• Prime the JVM environment a large number of times with a single input
string which matches none of the characters of password

• Time a single invocation of secure password checker on a different value
for both cases and compare the results

We assume both inputs are of length 4, and the secret password is again LEET .
We performed 1000 trials of this process and averaged the result. The number
of priming iterations was 40000. The results are shown in Figure 3. Clearly,
when JIT is disabled (Figure 3a) we see no side-channel. When JIT is enabled
(Figure 3b) we see a slight difference in the timing values. Again, the observable
difference is small, but noticeable.

4 Case Study: Java ModPow

Side-channels, whether induced by the JIT compiler or by developers them-
selves, are much easier to detect when encompassed code is relatively small.
Modern cryptographic functions contain much more code than the password
checker example mentioned in Section 3.2. We consider the Java function
BigInteger.modPow, for which the source code can be found in the Appendix A.
The core of BigInteger.modPow function does only a small amount of work, rel-
egating much of the computation to the functions BigInteger.oddModPow and
BigInteger.montgomeryMultiply. The algorithm used is a variant of the slid-
ing window algorithm equipped with montgomery multiplication. Given a base,
exponent, and modulus the algorithm works as follows. Initially, if modulus
is even, the algorithm separates it into an odd part (m1) and a power of two
(m2), exponentiates mod m1 through BigInteger.oddModPow, manually expo-
nentiates mod m2, and uses the Chinese Remainder Theorem to combine the
results. If modulus is odd, the algorithm simply calls BigInteger.oddModPow to

5

perform the modular exponentiation. Regardless of whether or not modulus is
even, the majority of the work is done in the BigInteger.montgomeryMultiply
function and its derivatives (implMontgomeryMultiply and montReduce).

Due to the large amount of code involved in even a single BigInteger.modPow
invocation, and the limited time available for experimentation, we were unable
to successfully induce a JIT-based side-channel in the code. Instead, we investi-
gated the different levels of optimization induced by JIT compilation, exploring
the possibility that a side-channel might be induced by carefully crafting input
values which trigger the diffent levels of optimization. In particular, we focused
on the number of times BigInteger.montgomeryMultiply was compiled to the
L4 level, and the effect on timing the compilation induced. We considered ten
randomly generated exponents, each with 20 digits and roughly equal in mag-
nitude, and used a similar priming scheme as the one mentioned in Section 3.2.
We used the following values for the base and modulus, as well as the exponent
value we used for the single timing of BigInteger.modPow:

• base b = 5973054346545950711

• even modulus m = 1642726067283675822

• odd modulus m = 1642726067283675821

• text exponent e = 16768880304745619701

We experimented with priming values p = {21, 22} and considered cases
where the modulus was even and where the modulus was odd. For space reasons,
the results for BigInteger.montgomeryMultiply are shown in Table 1, while
the full results are shown in Appendix B. The second column shows how many
times montgomeryMultiplication was invoked in a single modPow invocation.
The interesting case is highlighted in Table 1, for the fifth exponent value e =
21581371295657932221. In both cases, montgomeryMultiply was not compiled
to the L4 level in any of the 100 trials when primed 21 times. When we primed
for 22 times, montgomeryMultiply was compiled to L4 in most of the cases,
resulting in a performance overhead in the timing of the last invocation. This
occurred for both even and odd modulus, though the timing is more prevalent
when the modulus was odd. Interestingly, in the timings for the even case for
all the exponents are higher when the modulus was even. We believe this is due
to the increased amount of work done when the modulus is even. While this
clearly isn’t a side-channel in and of itself, it gives credence to the idea that
JIT compilation may be able to induce side-channels in rather complex blocks
of code.

5 Conclusion

In this report we explored the possibility that Just-In-Time compilation op-
timizations within the context of runtime systems can inadverdently induce
side-channels in previously secure code. Specifically, we investigated the JIT

6

(a) Odd modulus

nP = 21 nP = 22
Exponent # Calls

L4 Time # L4 Time
25730899574802462604 436 4 80941 (98%) 1 69815 (88%)
24660523187409145475 436 9 81926 (99%) 2 69605 (87%)
33649042240140657826 458 0 71057 (86%) 0 67897 (85%)
28324482328545617634 436 2 81665 (98%) 4 65914 (83%)
21581371295657932221 392 0 69231 (83%) 81 77826 (98%)
25652608396773858801 436 5 80565 (97%) 3 68651 (86%)
24341655831718219991 414 33 69864 (84%) 10 79685 (100%)
23536477189379635045 436 0 78880 (95%) 3 69932 (88%)
24020887706891028596 436 4 82994 (100%) 6 69765 (88%)
25608332753867915599 436 1 80707 (97%) 3 69593 (87%)

(b) Even modulus

nP = 21 nP = 22
Exponent # Calls

L4 Time # L4 Time
25730899574802462604 436 99 96145 (90%) 99 85493 (87%)
24660523187409145475 436 100 95067 (89%) 100 87333 (89%)
33649042240140657826 458 98 98635 (93%) 96 87591 (89%)
28324482328545617634 436 99 98545 (92%) 98 89117 (90%)
21581371295657932221 392 0 106599 (100%) 94 98678 (100%)
25652608396773858801 436 98 96233 (90%) 99 85908 (87%)
24341655831718219991 414 97 101209 (95%) 97 88342 (90%)
23536477189379635045 436 99 95723 (90%) 99 86699 (88%)
24020887706891028596 436 98 99169 (93%) 100 90106 (91%)
25608332753867915599 436 100 95377 (89%) 98 84983 (86%)

Table 1: The results for montgomeryMultiplication during 100 modPow com-
putations. Time is in nanoseconds, with the percentage this exponent took with
respect to the mean timing of all exponents in parenthesis.

7

component of the Java Hotspot Virtual Machine on a toy password checker ex-
ample, and the real world implementation of the cryptographic function mod-
Pow within the Java library. We were able to induce a side-channel in the
password checker example, and showed promising results for the case of mod-
Pow. Possible future work includes a deeper investigation of the effects of the
JIT compiler on complex code blocks such as those found in modPow, and other
cryptographic functions within the Java library. Our work shows that JIT-like
optimizations in runtime systems can potentially induce a side-channel, or at
least affect the strength of existing side-channels.

8

References

[1] Timos Antopoulos, Paul Gazzillo, Michael Hicks, Eric Koskinen, Tachio
Terauchi, and Shiyi Wei. Decomposition instead of self-composition for k-
safety. 2017.

[2] David Brumley and Dan Boneh. Remote timing attacks are practical. Com-
puter Networks, 48(5):701–716, 2005.

[3] Jia Chen, Yu Feng, and Isil Dillig. Precise detection of side-channel vul-
nerabilities using quantitative cartesian hoare logic. In Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Secu-
rity, pages 875–890. ACM, 2017.

[4] Boris Köpf and David Basin. An information-theoretic model for adaptive
side-channel attacks. In Proceedings of the 14th ACM conference on Com-
puter and communications security, pages 286–296. ACM, 2007.

[5] Pedro Malagón, Juan-Mariano de Goyeneche, Marina Zapater, Zorana
Bankovic, José M Moya, and David Fraga. Effects of compiler optimiza-
tions on side-channel attacks.

[6] Dan Page. A note on side-channels resulting from dynamic compilation.
IACR Cryptology ePrint Archive, 2006:349, 2006.

[7] Quoc-Sang Phan, Lucas Bang, Corina S Pasareanu, Pasquale Malacaria,
and Tevfik Bultan. Synthesis of adaptive side-channel attacks. In Computer
Security Foundations Symposium (CSF), 2017 IEEE 30th, pages 328–342.
IEEE, 2017.

9

Appendices

Appendix A Java BigInteger modPow Source code

Listing 1: Java listing

1 /**

2 * Returns a BigInteger whose value is

3 * <tt>(this^{exponent} mod m)</tt>. (Unlike {@code pow

}, this

4 * method permits negative exponents.)

5 *

6 * @param exponent the exponent.

7 * @param m the modulus.

8 * @return <tt>this^{exponent} mod m</tt>

9 * @throws ArithmeticException {@code m} ≤ 0 or the exponent

is

10 * negative and this BigInteger is not <i>relatively

11 * prime</i> to {@code m}.

12 * @see #modInverse

13 */

14 public BigInteger modPow(BigInteger exponent, BigInteger m) {

15 if (m.signum <= 0)

16 throw new ArithmeticException("BigInteger: modulus not

positive");

17

18 // Trivial cases

19 if (exponent.signum == 0)

20 return (m.equals(ONE) ? ZERO : ONE);

21

22 if (this.equals(ONE))

23 return (m.equals(ONE) ? ZERO : ONE);

24

25 if (this.equals(ZERO) && exponent.signum >= 0)

26 return ZERO;

27

28 if (this.equals(negConst[1]) && (!exponent.testBit(0)))

29 return (m.equals(ONE) ? ZERO : ONE);

30

31 boolean invertResult;

32 if ((invertResult = (exponent.signum < 0)))

33 exponent = exponent.negate();

34

35 BigInteger base = (this.signum < 0 || this.compareTo(m) >=

0

36 ? this.mod(m) : this);

10

37 BigInteger result;

38 if (m.testBit(0)) { // odd modulus

39 result = base.oddModPow(exponent, m);

40 } else {

41 /*

42 * Even modulus. Tear it into an "odd part" (m1) and

power of two

43 * (m2), exponentiate mod m1, manually exponentiate mod

m2, and

44 * use Chinese Remainder Theorem to combine results.

45 */

46

47 // Tear m apart into odd part (m1) and power of 2 (m2)

48 int p = m.getLowestSetBit(); // Max pow of 2 that

divides m

49

50 BigInteger m1 = m.shiftRight(p); // m/2**p

51 BigInteger m2 = ONE.shiftLeft(p); // 2**p

52

53 // Calculate new base from m1

54 BigInteger base2 = (this.signum < 0 || this.compareTo(

m1) >= 0

55 ? this.mod(m1) : this);

56

57 // Caculate (base ** exponent) mod m1.

58 BigInteger a1 = (m1.equals(ONE) ? ZERO :

59 base2.oddModPow(exponent, m1));

60

61 // Calculate (this ** exponent) mod m2

62 BigInteger a2 = base.modPow2(exponent, p);

63

64 // Combine results using Chinese Remainder Theorem

65 BigInteger y1 = m2.modInverse(m1);

66 BigInteger y2 = m1.modInverse(m2);

67

68 if (m.mag.length < MAX_MAG_LENGTH / 2) {

69 result = a1.multiply(m2).multiply(y1).add(a2.

multiply(m1).multiply(y2)).mod(m);

70 } else {

71 MutableBigInteger t1 = new MutableBigInteger();

72 new MutableBigInteger(a1.multiply(m2)).multiply(new

MutableBigInteger(y1), t1);

73 MutableBigInteger t2 = new MutableBigInteger();

74 new MutableBigInteger(a2.multiply(m1)).multiply(new

MutableBigInteger(y2), t2);

75 t1.add(t2);

76 MutableBigInteger q = new MutableBigInteger();

Listing 1 (Cont.): Java listing

11

77 result = t1.divide(new MutableBigInteger(m), q).

toBigInteger();

78 }

79 }

80

81 return (invertResult ? result.modInverse(m) : result);

82 }

83

84 /**

85 * Returns a BigInteger whose value is x to the power of y mod

z.

86 * Assumes: z is odd && x < z.

87 */

88 private BigInteger oddModPow(BigInteger y, BigInteger z) {

89 /*

90 * The algorithm is adapted from Colin Plumb’s C library.

91 *

92 * The window algorithm:

93 * The idea is to keep a running product of b1 = n^(high-order

bits of exp)

94 * and then keep appending exponent bits to it. The following

patterns

95 * apply to a 3-bit window (k = 3):

96 * To append 0: square

97 * To append 1: square, multiply by n^1

98 * To append 10: square, multiply by n^1, square

99 * To append 11: square, square, multiply by n^3

100 * To append 100: square, multiply by n^1, square, square

101 * To append 101: square, square, square, multiply by n^5

102 * To append 110: square, square, multiply by n^3, square

103 * To append 111: square, square, square, multiply by n^7

104 *

105 * Since each pattern involves only one multiply, the longer

the pattern

106 * the better, except that a 0 (no multiplies) can be appended

directly.

107 * We precompute a table of odd powers of n, up to 2^k, and can

then

108 * multiply k bits of exponent at a time. Actually, assuming

random

109 * exponents, there is on average one zero bit between needs to

110 * multiply (1/2 of the time there’s none, 1/4 of the time

there’s 1,

111 * 1/8 of the time, there’s 2, 1/32 of the time, there’s 3, etc

.), so

112 * you have to do one multiply per k+1 bits of exponent.

113 *

Listing 1 (Cont.): Java listing

12

114 * The loop walks down the exponent, squaring the result buffer

as

115 * it goes. There is a wbits+1 bit lookahead buffer, buf, that

is

116 * filled with the upcoming exponent bits. (What is read after

the

117 * end of the exponent is unimportant, but it is filled with

zero here.)

118 * When the most-significant bit of this buffer becomes set, i.

e.

119 * (buf & tblmask) != 0, we have to decide what pattern to

multiply

120 * by, and when to do it. We decide, remember to do it in

future

121 * after a suitable number of squarings have passed (e.g. a

pattern

122 * of "100" in the buffer requires that we multiply by n^1

immediately;

123 * a pattern of "110" calls for multiplying by n^3 after one

more

124 * squaring), clear the buffer, and continue.

125 *

126 * When we start, there is one more optimization: the result

buffer

127 * is implcitly one, so squaring it or multiplying by it can be

128 * optimized away. Further, if we start with a pattern like

"100"

129 * in the lookahead window, rather than placing n into the

buffer

130 * and then starting to square it, we have already computed n^2

131 * to compute the odd-powers table, so we can place that into

132 * the buffer and save a squaring.

133 *

134 * This means that if you have a k-bit window, to compute n^z,

135 * where z is the high k bits of the exponent, 1/2 of the time

136 * it requires no squarings. 1/4 of the time, it requires 1

137 * squaring, ... 1/2^(k-1) of the time, it reqires k-2

squarings.

138 * And the remaining 1/2^(k-1) of the time, the top k bits are

a

139 * 1 followed by k-1 0 bits, so it again only requires k-2

140 * squarings, not k-1. The average of these is 1. Add that

141 * to the one squaring we have to do to compute the table,

142 * and you’ll see that a k-bit window saves k-2 squarings

143 * as well as reducing the multiplies. (It actually doesn’t

144 * hurt in the case k = 1, either.)

145 */

Listing 1 (Cont.): Java listing

13

146 // Special case for exponent of one

147 if (y.equals(ONE))

148 return this;

149

150 // Special case for base of zero

151 if (signum == 0)

152 return ZERO;

153

154 int[] base = mag.clone();

155 int[] exp = y.mag;

156 int[] mod = z.mag;

157 int modLen = mod.length;

158

159 // Make modLen even. It is conventional to use a

cryptographic

160 // modulus that is 512, 768, 1024, or 2048 bits, so this

code

161 // will not normally be executed. However, it is necessary

for

162 // the correct functioning of the HotSpot intrinsics.

163 if ((modLen & 1) != 0) {

164 int[] x = new int[modLen + 1];

165 System.arraycopy(mod, 0, x, 1, modLen);

166 mod = x;

167 modLen++;

168 }

169

170 // Select an appropriate window size

171 int wbits = 0;

172 int ebits = bitLength(exp, exp.length);

173 // if exponent is 65537 (0x10001), use minimum window size

174 if ((ebits != 17) || (exp[0] != 65537)) {

175 while (ebits > bnExpModThreshTable[wbits]) {

176 wbits++;

177 }

178 }

179

180 // Calculate appropriate table size

181 int tblmask = 1 << wbits;

182

183 // Allocate table for precomputed odd powers of base in

Montgomery form

184 int[][] table = new int[tblmask][];

185 for (int i=0; i < tblmask; i++)

186 table[i] = new int[modLen];

187

188 // Compute the modular inverse of the least significant 64-

Listing 1 (Cont.): Java listing

14

bit

189 // digit of the modulus

190 long n0 = (mod[modLen-1] & LONG_MASK) + ((mod[modLen-2] &

LONG_MASK) << 32);

191 long inv = -MutableBigInteger.inverseMod64(n0);

192

193 // Convert base to Montgomery form

194 int[] a = leftShift(base, base.length, modLen << 5);

195

196 MutableBigInteger q = new MutableBigInteger(),

197 a2 = new MutableBigInteger(a),

198 b2 = new MutableBigInteger(mod);

199 b2.normalize(); // MutableBigInteger.divide() assumes that

its

200 // divisor is in normal form.

201

202 MutableBigInteger r= a2.divide(b2, q);

203 table[0] = r.toIntArray();

204

205 // Pad table[0] with leading zeros so its length is at

least modLen

206 if (table[0].length < modLen) {

207 int offset = modLen - table[0].length;

208 int[] t2 = new int[modLen];

209 System.arraycopy(table[0], 0, t2, offset, table[0].

length);

210 table[0] = t2;

211 }

212

213 // Set b to the square of the base

214 int[] b = montgomerySquare(table[0], mod, modLen, inv, null

);

215

216 // Set t to high half of b

217 int[] t = Arrays.copyOf(b, modLen);

218

219 // Fill in the table with odd powers of the base

220 for (int i=1; i < tblmask; i++) {

221 table[i] = montgomeryMultiply(t, table[i-1], mod,

modLen, inv, null);

222 }

223

224 // Pre load the window that slides over the exponent

225 int bitpos = 1 << ((ebits-1) & (32-1));

226

227 int buf = 0;

228 int elen = exp.length;

Listing 1 (Cont.): Java listing

15

229 int eIndex = 0;

230 for (int i = 0; i <= wbits; i++) {

231 buf = (buf << 1) | (((exp[eIndex] & bitpos) != 0)?1:0);

232 bitpos >>>= 1;

233 if (bitpos == 0) {

234 eIndex++;

235 bitpos = 1 << (32-1);

236 elen--;

237 }

238 }

239

240 int multpos = ebits;

241

242 // The first iteration, which is hoisted out of the main

loop

243 ebits--;

244 boolean isone = true;

245

246 multpos = ebits - wbits;

247 while ((buf & 1) == 0) {

248 buf >>>= 1;

249 multpos++;

250 }

251

252 int[] mult = table[buf >>> 1];

253

254 buf = 0;

255 if (multpos == ebits)

256 isone = false;

257

258 // The main loop

259 while (true) {

260 ebits--;

261 // Advance the window

262 buf <<= 1;

263

264 if (elen != 0) {

265 buf |= ((exp[eIndex] & bitpos) != 0) ? 1 : 0;

266 bitpos >>>= 1;

267 if (bitpos == 0) {

268 eIndex++;

269 bitpos = 1 << (32-1);

270 elen--;

271 }

272 }

273

274 // Examine the window for pending multiplies

Listing 1 (Cont.): Java listing

16

275 if ((buf & tblmask) != 0) {

276 multpos = ebits - wbits;

277 while ((buf & 1) == 0) {

278 buf >>>= 1;

279 multpos++;

280 }

281 mult = table[buf >>> 1];

282 buf = 0;

283 }

284

285 // Perform multiply

286 if (ebits == multpos) {

287 if (isone) {

288 b = mult.clone();

289 isone = false;

290 } else {

291 t = b;

292 a = montgomeryMultiply(t, mult, mod, modLen, inv

, a);

293 t = a; a = b; b = t;

294 }

295 }

296

297 // Check if done

298 if (ebits == 0)

299 break;

300

301 // Square the input

302 if (!isone) {

303 t = b;

304 a = montgomerySquare(t, mod, modLen, inv, a);

305 t = a; a = b; b = t;

306 }

307 }

308

309 // Convert result out of Montgomery form and return

310 int[] t2 = new int[2*modLen];

311 System.arraycopy(b, 0, t2, modLen, modLen);

312

313 b = montReduce(t2, mod, modLen, (int)inv);

314

315 t2 = Arrays.copyOf(b, modLen);

316

317 return new BigInteger(1, t2);

318 }

319

320 /**

Listing 1 (Cont.): Java listing

17

321 * Returns a BigInteger whose value is (this ** exponent) mod

(2**p)

322 */

323 private BigInteger modPow2(BigInteger exponent, int p) {

324 /*

325 * Perform exponentiation using repeated squaring trick,

chopping off

326 * high order bits as indicated by modulus.

327 */

328 BigInteger result = ONE;

329 BigInteger baseToPow2 = this.mod2(p);

330 int expOffset = 0;

331

332 int limit = exponent.bitLength();

333

334 if (this.testBit(0))

335 limit = (p-1) < limit ? (p-1) : limit;

336

337 while (expOffset < limit) {

338 if (exponent.testBit(expOffset))

339 result = result.multiply(baseToPow2).mod2(p);

340 expOffset++;

341 if (expOffset < limit)

342 baseToPow2 = baseToPow2.square().mod2(p);

343 }

344

345 return result;

346 }

Listing 1 (Cont.): Java listing

// Montgomery multiplication. These are wrappers for

// implMontgomeryXX routines which are expected to be replaced

by

// virtual machine intrinsics. We don’t use the intrinsics for

// very large operands: MONTGOMERY_INTRINSIC_THRESHOLD should

be

// larger than any reasonable crypto key.

private static int[] montgomeryMultiply(int[] a, int[] b, int[]

n, int len, long inv,

int[] product) {

implMontgomeryMultiplyChecks(a, b, n, len, product);

if (len > MONTGOMERY_INTRINSIC_THRESHOLD) {

// Very long argument: do not use an intrinsic

product = multiplyToLen(a, len, b, len, product);

18

return montReduce(product, n, len, (int)inv);

} else {

return implMontgomeryMultiply(a, b, n, len, inv,

materialize(product, len));

}

}

private static int[] montgomerySquare(int[] a, int[] n, int len

, long inv,

int[] product) {

implMontgomeryMultiplyChecks(a, a, n, len, product);

if (len > MONTGOMERY_INTRINSIC_THRESHOLD) {

// Very long argument: do not use an intrinsic

product = squareToLen(a, len, product);

return montReduce(product, n, len, (int)inv);

} else {

return implMontgomerySquare(a, n, len, inv, materialize

(product, len));

}

}

// Range-check everything.

private static void implMontgomeryMultiplyChecks

(int[] a, int[] b, int[] n, int len, int[] product) throws

RuntimeException {

if (len % 2 != 0) {

throw new IllegalArgumentException("input array length

must be even: " + len);

}

if (len < 1) {

throw new IllegalArgumentException("invalid input

length: " + len);

}

if (len > a.length ||

len > b.length ||

len > n.length ||

(product != null && len > product.length)) {

throw new IllegalArgumentException("input array length

out of bound: " + len);

}

}

// Make sure that the int array z (which is expected to contain

// the result of a Montgomery multiplication) is present and

// sufficiently large.

private static int[] materialize(int[] z, int len) {

Listing 1 (Cont.): Java listing

19

if (z == null || z.length < len)

z = new int[len];

return z;

}

// These methods are intended to be be replaced by virtual

machine

// intrinsics.

private static int[] implMontgomeryMultiply(int[] a, int[] b,

int[] n, int len,

long inv, int[] product) {

product = multiplyToLen(a, len, b, len, product);

return montReduce(product, n, len, (int)inv);

}

private static int[] implMontgomerySquare(int[] a, int[] n, int

len,

long inv, int[] product) {

product = squareToLen(a, len, product);

return montReduce(product, n, len, (int)inv);

}

/**

* Montgomery reduce n, modulo mod. This reduces modulo mod and

divides

* by 2^(32*mlen). Adapted from Colin Plumb’s C library.

*/

private static int[] montReduce(int[] n, int[] mod, int mlen,

int inv) {

int c=0;

int len = mlen;

int offset=0;

do {

int nEnd = n[n.length-1-offset];

int carry = mulAdd(n, mod, offset, mlen, inv * nEnd);

c += addOne(n, offset, mlen, carry);

offset++;

} while (--len > 0);

while (c > 0)

c += subN(n, mod, mlen);

while (intArrayCmpToLen(n, mod, mlen) >= 0)

subN(n, mod, mlen);

Listing 1 (Cont.): Java listing

20

return n;

}

Listing 1 (Cont.): Java listing

Appendix B BigInteger modPow Results

The following exponent values correspond to the respective columns from left
to right:

• 25730899574802462604

• 24660523187409145475

• 33649042240140657826

• 28324482328545617634

• 21581371295657932221

• 25652608396773858801

• 24341655831718219991

• 23536477189379635045

• 24020887706891028596

• 25608332753867915599

21

Figure 4: Even modulus, priming value = 21

Figure 5: Even modulus, priming value = 22

Figure 6: Method compilation results for BigInteger.modPow in the case of an
even modulus over 100 runs. The running time on the bottom is in nanoseconds.

22

Figure 7: Even odd, priming value = 21

Figure 8: Even odd, priming value = 22

Figure 9: Method compilation results for BigInteger.modPow in the case of an
odd modulus over 100 runs. The running time on the bottom is in nanoseconds.

23

