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Abstract

The fields of cryptography and machine learning are historically associated,
with pivotal results in each being closely related [1]. In particular, both fields
share a common setting of an adversary seeking to “break” a system by effi-
ciently learning some unknown function—an encryption as indexed by a secret
key in the case of cryptography, or the target function from inputs to target
labels in machine learning. In this paper, we survey these connections between
the two fields and consider the problem of side channel attacks on machine
learning algorithms in depth.

1 Introduction

The typical adversarial setting in cryptography involves a cryptanalyst seeking to
“break” a cryptographic system, that is to learn an unknown function from plain-
text to encrypted text from a family of functions as indexed by a secret key [1].
Fortunately, public-key encryption algorithms such as the Rabin Algorithm exist
whose security is provably as hard as factorization, rendering the problem for the
adversarial cryptanalyst intractable. Unfortunately, this is only for the case of pas-
sive attacks—where the attacker only knows the public signature key—and not for
active attacks where the signer can be asked to sign specially constructed messages.
A correspondence exists in machine learning, where a ‘secret key’ corresponds to the
‘target function’ which we seek to efficiently learn with (a polynomial number of)
‘membership queries’, or values of the unknown function on specific input [2].

A further parallel can be drawn between the fields of cryptography and machine
learning. Consider an adversarial attack on a machine learning system in which the
attacker seeks to break its confidentiality or privacy ; where confidentiality assumes
the model itself represents intellectual property as in financial market systems, and
privacy assumes an imperative that the training data for the model not be made
public as in medical applications [3].
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An overview of the connections and contributions between the fields of cryptog-
raphy and machine learning is presented in Section 2. This is followed by an outline
and analysis of side-channel methods to attack machine learning systems in Section 3,
following recent work. These present the problem at hand in Section 3.1, measure how
effectively modern neural network approaches memorize their inputs in Section 3.2,
and offer provably privacy-preserving methods in Section 3.3.

2 Connections between Crypto and ML

Theoretical results from modern cryptography place hard boundaries on how effi-
ciently a learning algorithm can recover an accurate representation, with virtually all
intractability results from Valiant’s model, the first serious inroad to computational
learning theory, due to cryptography [4]. Michael Kearns’ Ph.D. thesis covers many
such key results and concepts [2, Section 7], which was followed up by further papers.
For instance, a representation-independent hardness result is achieved by polynomial-
time reducing the problems of factoring Blum integers, inverting the RSA function,
and recognizing quadratic residues into a learning problem [5]. This reduction places
the learning algorithm into the shows of an adversarial man-in-the-middle who at-
tempts to learn an inverse of a trapdoor function by selectively choosing messages to
encrypt with a given public key.

The advancements made in cryptography due to machine learning are also nu-
merous. For instance, primitives such as pseudo-random bit generators, one-way
functions, and private-key cryptosystems can be arrived at by small transformation
in standard learning problems [6, 7].

3 Side channel attacks on ML models

3.1 Problem introduction

We consider the problem of a model-inversion attack, as described by [8]. Machine
learning algorithms have surpassed trained human predictions in many domains in-
cluding on medical outcomes and decisions. The best-performing models today are
data hungry and require a large number of samples and associated labels to learn an
underlying representative distribution. However, a sample from the distribution can
be inherently private, such as in the case of the sample being a patient and the label
their medical diagnosis or medical history. A model-inversion attack as considered
by [8] considers a ML-as-a-service setting1, in which users can query a website with
their information to receive their probabilities of being in the target class or not (e.g.
are they sick?), as ascertained by the model. The goal of the adversary is to learn
information about which samples where or where not part of the training data (e.g.
was John Doe marked as HIV-positive), thus revealing sensitive data.

1Such as offered by Microsoft Azure Learning or BigML.

2



Figure 1: From [11]. Adversarial examples for the AlexNet neural network model
which dominated the ImageNet competition in 2012, achieving top-5 error of 15.3%
and more than 10.8 percentage points better than the next model. In left columns
of (a) and (b), uniformly sampled inputs which are correctly classified, while in right
columns the noise in the center columns is added such that they are all predicted to
be ostriches: “ostrich, Struthio camelus”.

A complete taxonomy of threat models is given by [9], which covers a broader set
of attacks that might, for instance, seek to reduce the capabilities of the model for a
targeted set of inputs (such that some set of emails will not be marked as spam) or
more generally harm the learning process. A general classification of attacks names
them as either white- or black-box depending on the amount of information of the
model the adversary has access to [3]. A white-box attack might have the entire
model—including full details of its architecture and trained weights—while a black-
box attack generally considers only having access to the predicted class probability
distribution for a given input.

Despite limited information, black-box attacks have shown worrying amount of
success in very practical settings [10]. For instance, it has been observed that ad-
versarial examples for machine learning models—inputs which any reasonable human
would classify as one thing but have had minute amounts of adversarial noise added
to them by backpropagation such that a targeted neural network model would clas-
sify them as another targeted class—surprisingly transfer to different neural network
models, even when they don’t share the same architecture. [11].

The observation that adversarial examples designed to fool one network transfer
to also cause difficulty for another model have led to black-box attacks to craft such
adversarial examples. It is a simple task to simply train a new model that parallels
the targeted model and transfer those attacks over [10]. This concept of training new
models, or ‘shadow models’, for adversarial attacks, has been used for membership
inference attacks [12] to determine if a given data input was part of the training
process or not.
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In the context of sensitive training data, neural network models are known to
overfit and predict with much higher confidence on samples they encountered during
training (see Section 3.2, below). As such, one can query an available model with
various inputs to see when it is likely that, for instance, ”John Doe, HIV+” may have
been in the training set and not ”John Doe, HIV-”. A variant of this to discover, via
hill-climbing the gradients of initially random inputs, which faces were used as part
of the training set was prototyped by [8].

3.2 Measuring memorization of models

The concept of exposure was introduced by [13], in which Carlini et al. sought to
quantify how much a model overfit on its input data. Using this measure, they define
a black-box attack to efficiently retrieve secret training data, and they show how a
model trained for only one epoch (i.e. the model only saw each input sample exactly
once, and not thousands to millions of times as in typical ML training pipelines) has
already partially overfit with a null-hypothesis testing p-value of 10−30.

Carlini et al.’s measure of exposure captures the notion of how likely (in terms of
log-likelihoods) a given input is according to the model as compared to the distribution
of all inputs. For instance, in their use-case of natural language processing, they
query to find the likeliest completion of the sentence “My SSN is:”, and discover
which sequence of nine digits is likeliest conditioned on the model, and accomplish
this via efficient generative sampling rather than brute-force.

3.3 Provably preserving privacy

In light of such extremely effective attacks on models, much effort has been put into
both practical defenses as well as theoretically understanding of the limitations of
such systems [14, 15, 16].

The most compelling of these introduces a system termed PATE [14] (for ‘Private
Aggregation of Teacher Ensembles’) with accompanying differential privacy guaran-
tees of the resulting model. The intuition for their method is that they allow no
direct access to the model being trained (the ‘student model’) on the actual training
data. Instead, they train an ensemble of ‘teacher models’, each on separate disjoint
sets of the data. Then, the student model is trained using publicly available and
non-sensitive data that is labeled by the ensemble of teacher models using network
distillation [17], which forces the student network to match the ensemble—mistakes
and all. As the student network never observes any private information, with the sole
exception of ensemble-predicted labels (with small amount of noise added for further
ambiguity) which are bottlenecked by the number of queries the student makes during
training, strong differential privacy guarantees can be shown: the addition or removal
of any single sensitive data record (or small number k of private records) has prov-
ably no effect on the students predictions. In this manner, even white-box attacks
where the adversary has full access to the model, including trained weights and exact
network architecture are unable to make membership queries on the training data.
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However, the PATE approach comes at a sacrifice of model accuracy. To achieve
the differential privacy guarantees requires splitting the training dataset into many
much smaller disjoint pieces. Neural network models especially are data hungry,
almost strictly improving with each added training sample.

A separate but related process to guarantee is introduced in [18]. This work
forgoes the teacher ensemble method and instead uses a noisy stochastic gradient
descent algorithm to ensure that no single data input provably effects the learned
algorithm. This addition of noise is a common tactic to achieve differential privacy for
decades [19], but comes at a cost of learning less from each example. However, as noted
by an invited paper by the two sets of authors comparing these two methods [16],
the guarantees offered by this method require sophisticated analysis, whereas no such
sophistication is required to understand that if 100 independently trained models
agree on a classification then that is true regardless of any given sensative input.

4 Conclusion

In this paper we surveyed the many fundamental contributions shared between the
two fields of cryptography and machine learning, including how advances in one led
to advances in the other. This was followed up by a deep dive into a burgeoning
and hot topic in both fields, namely side-channel attacks which seek to infer some
hidden information using mechanisms that were unknown to the system designers.
In particular, this paper surveyed work covering our current understanding of how
machine learning models tend to overfit, what problems that might cause from a
privacy perspective, and a sketch of recent attempts to provably alleviate and their
downsides.
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