RSA VRF

Andrew Huang, Chang Rey Tang

University of California, Santa Barbara

andrewhuang®@ucsb.edu, tang.changrey©@gmail.com

June 12, 2018

Andrew Huang, Chang Rey Tang (UCSB) June 12, 2018 1/21



Overview

© Introduction
© Motivation

© Basic Overview
@ Properties

© Contribution
@ Implementation
@ Parameters

@ Citations

Andrew Huang, Chang Rey Tang (UCSB) June 12, 2018 2/21



Introduction

Verifiable Random Function (VRF)
@ Essentially a public-key version of a keyed cryptographic hash
@ Secret key holder computes hash

@ Anyone with public key can verify correctness of the hash

Andrew Huang, Chang Rey Tang (UCSB) June 12, 2018 3/21



Can be used to provide privacy against offline enumeration (eg. dictionary
attacks) in data stored in a hash-based data structure

Other use cases:
e NSEC5 [1]

e Cryptocurrencies [2]

Andrew Huang, Chang Rey Tang (UCSB)

June 12, 2018 4/21



Basic Overview - Terminology

@ SK: The private key for the VRF, generated outside of VRF
@ PK: The public key for the VRF, generated outside of VRF
@ «: The input to be hashed by the VRF.

o m: The VRF proof.

°

Prover: The Prover holds the private VRF key SK and public VRF
key PK.

Verifier: The Verifier holds the public VRF key PK.

Andrew Huang, Chang Rey Tang (UCSB) June 12, 2018 5/21



Basic Overview - Methods

VRF_prove(SK, o) — m

o Invoked by the Prover, using the private key SK to construct a proof
™

VRF _verify(PK, «, m) — VALID or INVALID

@ Invoked by the Verifier to verify the correctness of the proof m using
the public key

Andrew Huang, Chang Rey Tang (UCSB) June 12, 2018 6 /21



@ Trusted Uniqueness

e Assuming PK and SK were generated in a trustworthy manner, a
computationally-bounded adversary cannot choose a VRF public key, a
VRF input «, two different VRF hash outputs and two proofs m; and
7o, such that w1 and 7, are valid proofs

@ Trusted collision resistance
e Assuming PK and SK were generated in a trustworthy manner, it is
computationally infeasible for an adversary to find two distinct VRF

inputs that have the same VRF hash, even if that adversary knows the
secret VRF key

@ Full Pseudorandomness

o If an adversarial Verifier sees a VRF hash input or output at any time
without its corresponding VRF proof, then the hash output is
indistinguishable from a random value.

Andrew Huang, Chang Rey Tang (UCSB) June 12, 2018 7/21



Contribution

Implement RSA VRF in Python2 such that we achieve the following
properties:

@ Trusted Uniqueness

@ Trusted Collision Resistance

@ Full Pseudo-randomness

Implementation uses RSA to generate public-private key primitives and
follows the standard RSA assumption in the random oracle model. Our
Python2 implementation uses the pyca/cryptography library [3] to achieve

this.

June 12, 2018 8/21

Andrew Huang, Chang Rey Tang (UCSB)



Implementation

VRF _prove(SK, a, k)
@ The VRF computes a proof 7 of length k as a deterministic RSA

signature on input « using the RSA algorithm parameterized with the
selected hash algorithm

VRF _verify(PK, a, 7, k)

@ A RSA signature verification is used to verify the correctness of the
proof generated by the VRF_prove function

Andrew Huang, Chang Rey Tang (UCSB) June 12, 2018 9/21



Parameters

RSA Public Key, < n,e >
@ n — modulus for both public and private keys
@ e — public key exponent

RSA Private Key, < n,d >
@ n — modulus for both public and private keys
@ d — private key exponent

k, length in octets of the RSA modulus n

Andrew Huang, Chang Rey Tang (UCSB) June 12, 2018



120SP

@ Conversion of a non-negative integer to an octet string
0S2I1P

@ Conversion of an octet string to a non-negative integer
RSASP1

@ RSA signature primitive
RSAVP1

@ RSA verification primitive
MGF1

@ Mask Generation Function based on your hash function of choice (i.e.
SHA-256)

Andrew Huang, Chang Rey Tang (UCSB) VRF June 12, 2018 11 /21



120SP

[20SP converts a non-negative integer to an octet string of a specified
length.

X — non-negative integer to be converted
xLen — intended length of the resulting octet string

X — corresponding octet string of length xLen

Andrew Huang, Chang Rey Tang (UCSB) VRF June 12, 2018 12 /21



OS2IP

OS2IP converts an octet string to a non-negative integer.

X — octet string to be converted

x — corresponding nonnegative integer

Andrew Huang, Chang Rey Tang (UCSB) VRF June 12, 2018 13 /21



RSASP1

RSASP1 is a standard algorithm for producing signatures using the RSA
private key

< n,d >— RSA private key
m — message representation, an integer between 0 and n — 1

s — signature representation, an integer between 0 and n —1

Andrew Huang, Chang Rey Tang (UCSB) VRF June 12, 2018 14 /21



RSAVP1

RSAVP1 is a standard algorithm for verifying signatures using the RSA
public key

< n,e >— RSA public key
s — signature representation, an integer between 0 and n —1

m — message representation, an integer between 0 and n — 1 \

Andrew Huang, Chang Rey Tang (UCSB) VRF June 12, 2018 15 /21



MGF1

MGF1 is a mask generation function based on a hash function.

hash — hash function (hLen denotes the length in octets of the hash
function output)

v

Input

mgfSeed — seed from which mask is generated, an octet string
maskLen — intended length in octets of the mask, at most 232 hlLen

v

mask — mask, an octet string of length maskLen

Andrew Huang, Chang Rey Tang (UCSB) June 12, 2018 16 / 21



Prover Implementation

Pseudocode: VRF _prove(SK, a, k)

def VRF_prove(secret_key, alpha, k):
EM = mgfi(alpha, k-1)
m = o0s2ip(EM)
s = secret_key.rsaspl(m)
pi = i2osp(s, k)
return pi

Andrew Huang, Chang Rey Tang (UCSB) VRF June 12, 2018 17 /21



Verifier Implementation

Pseudocode: VRF _verify(PK, o, 7, k)

def VRF_verifying(public_key, alpha, pi, k):
s = os2ip(pi)
m = public_key.rsavpl(s)
EM = i2osp(m, k-1)
EM_ = mgfi(alpha, k-1)
if EM == EM_:
return "VALID"
else:
return "INVALID"

Andrew Huang, Chang Rey Tang (UCSB) June 12, 2018



RSA VRF Flow Diagram

Verifier (n, e) Hasher (n, e)

input, «

\

proof,

A

deterministic
RSA signature

= MGF1(a)) mod n

RSA signature
verification

~ d
if MGF1(a) = a” (mod n)
hash = hash(a)

else
INVALID

regular hash function
(eg SHA256)

Andrew Huang, Chang Rey Tang (UCSB) VRF June 12, 2018 19 /21



References

NSEC5, DNSSEC Authenticated Denial of Existence
https://datatracker.ietf.org/doc/draft-vcelak-nsec5/

Y. Gilad, R. Hemo, S. Micali, G. Vlachos, N. Zeldovich
Algorand: Scaling Byzantine Agreements for Cryptocurrencies
MIT CSAIL

Pyca Cryptography Documetation
https://cryptography.io/en/latest/

Andrew Huang, Chang Rey Tang (UCSB) June 12, 2018 20 /21



Questions?

Andrew Huang, Chang Rey Tang (UCSB) June 12, 2018 21 /21



	Introduction
	Motivation
	Basic Overview
	Properties
	Contribution
	Implementation
	Parameters
	Citations

