
RSA VRF

Andrew Huang, Chang Rey Tang

University of California, Santa Barbara

andrewhuang@ucsb.edu, tang.changrey@gmail.com

June 12, 2018

Andrew Huang, Chang Rey Tang (UCSB) VRF June 12, 2018 1 / 21



Overview

1 Introduction

2 Motivation

3 Basic Overview

4 Properties

5 Contribution

6 Implementation

7 Parameters

8 Citations

Andrew Huang, Chang Rey Tang (UCSB) VRF June 12, 2018 2 / 21



Introduction

Verifiable Random Function (VRF)

Essentially a public-key version of a keyed cryptographic hash

Secret key holder computes hash

Anyone with public key can verify correctness of the hash

Andrew Huang, Chang Rey Tang (UCSB) VRF June 12, 2018 3 / 21



Motivation

Can be used to provide privacy against offline enumeration (eg. dictionary
attacks) in data stored in a hash-based data structure

Other use cases:

NSEC5 [1]

Cryptocurrencies [2]

Andrew Huang, Chang Rey Tang (UCSB) VRF June 12, 2018 4 / 21



Basic Overview - Terminology

SK : The private key for the VRF, generated outside of VRF

PK : The public key for the VRF, generated outside of VRF

α: The input to be hashed by the VRF.

π: The VRF proof.

Prover: The Prover holds the private VRF key SK and public VRF
key PK .

Verifier: The Verifier holds the public VRF key PK .

Andrew Huang, Chang Rey Tang (UCSB) VRF June 12, 2018 5 / 21



Basic Overview - Methods

VRF prove(SK , α) → π

Invoked by the Prover, using the private key SK to construct a proof
π

VRF verify(PK , α, π) → VALID or INVALID

Invoked by the Verifier to verify the correctness of the proof π using
the public key

Andrew Huang, Chang Rey Tang (UCSB) VRF June 12, 2018 6 / 21



Properties

Trusted Uniqueness

Assuming PK and SK were generated in a trustworthy manner, a
computationally-bounded adversary cannot choose a VRF public key, a
VRF input α, two different VRF hash outputs and two proofs π1 and
π2, such that π1 and π2 are valid proofs

Trusted collision resistance

Assuming PK and SK were generated in a trustworthy manner, it is
computationally infeasible for an adversary to find two distinct VRF
inputs that have the same VRF hash, even if that adversary knows the
secret VRF key

Full Pseudorandomness

If an adversarial Verifier sees a VRF hash input or output at any time
without its corresponding VRF proof, then the hash output is
indistinguishable from a random value.

Andrew Huang, Chang Rey Tang (UCSB) VRF June 12, 2018 7 / 21



Contribution

Implement RSA VRF in Python2 such that we achieve the following
properties:

Trusted Uniqueness

Trusted Collision Resistance

Full Pseudo-randomness

Note

Implementation uses RSA to generate public-private key primitives and
follows the standard RSA assumption in the random oracle model. Our
Python2 implementation uses the pyca/cryptography library [3] to achieve
this.

Andrew Huang, Chang Rey Tang (UCSB) VRF June 12, 2018 8 / 21



Implementation

VRF prove(SK , α, k)

The VRF computes a proof π of length k as a deterministic RSA
signature on input α using the RSA algorithm parameterized with the
selected hash algorithm

VRF verify(PK , α, π, k)

A RSA signature verification is used to verify the correctness of the
proof generated by the VRF prove function

Andrew Huang, Chang Rey Tang (UCSB) VRF June 12, 2018 9 / 21



Parameters

RSA Public Key, < n, e >

n→ modulus for both public and private keys

e → public key exponent

RSA Private Key, < n, d >

n→ modulus for both public and private keys

d → private key exponent

k , length in octets of the RSA modulus n

Andrew Huang, Chang Rey Tang (UCSB) VRF June 12, 2018 10 / 21



Primitives

I2OSP

Conversion of a non-negative integer to an octet string

OS2IP

Conversion of an octet string to a non-negative integer

RSASP1

RSA signature primitive

RSAVP1

RSA verification primitive

MGF1

Mask Generation Function based on your hash function of choice (i.e.
SHA-256)

Andrew Huang, Chang Rey Tang (UCSB) VRF June 12, 2018 11 / 21



I2OSP

I2OSP converts a non-negative integer to an octet string of a specified
length.

Input

x → non-negative integer to be converted
xLen→ intended length of the resulting octet string

Output

X → corresponding octet string of length xLen

Andrew Huang, Chang Rey Tang (UCSB) VRF June 12, 2018 12 / 21



OS2IP

OS2IP converts an octet string to a non-negative integer.

Input

X → octet string to be converted

Output

x → corresponding nonnegative integer

Andrew Huang, Chang Rey Tang (UCSB) VRF June 12, 2018 13 / 21



RSASP1

RSASP1 is a standard algorithm for producing signatures using the RSA
private key

Input

< n, d >→ RSA private key
m→ message representation, an integer between 0 and n − 1

Output

s → signature representation, an integer between 0 and n − 1

Andrew Huang, Chang Rey Tang (UCSB) VRF June 12, 2018 14 / 21



RSAVP1

RSAVP1 is a standard algorithm for verifying signatures using the RSA
public key

Input

< n, e >→ RSA public key
s → signature representation, an integer between 0 and n − 1

Output

m→ message representation, an integer between 0 and n − 1

Andrew Huang, Chang Rey Tang (UCSB) VRF June 12, 2018 15 / 21



MGF1

MGF1 is a mask generation function based on a hash function.

Options

hash→ hash function (hLen denotes the length in octets of the hash
function output)

Input

mgfSeed → seed from which mask is generated, an octet string
maskLen→ intended length in octets of the mask, at most 232 hLen

Output

mask → mask, an octet string of length maskLen

Andrew Huang, Chang Rey Tang (UCSB) VRF June 12, 2018 16 / 21



Prover Implementation

Pseudocode: VRF prove(SK , α, k)

def VRF_prove(secret_key, alpha, k):

EM = mgf1(alpha, k-1)

m = os2ip(EM)

s = secret_key.rsasp1(m)

pi = i2osp(s, k)

return pi

Andrew Huang, Chang Rey Tang (UCSB) VRF June 12, 2018 17 / 21



Verifier Implementation

Pseudocode: VRF verify(PK , α, π, k)

def VRF_verifying(public_key, alpha, pi, k):

s = os2ip(pi)

m = public_key.rsavp1(s)

EM = i2osp(m, k-1)

EM_ = mgf1(alpha, k-1)

if EM == EM_:

return "VALID"

else:

return "INVALID"

Andrew Huang, Chang Rey Tang (UCSB) VRF June 12, 2018 18 / 21



RSA VRF Flow Diagram

Andrew Huang, Chang Rey Tang (UCSB) VRF June 12, 2018 19 / 21



References

NSEC5, DNSSEC Authenticated Denial of Existence

https://datatracker.ietf.org/doc/draft-vcelak-nsec5/

Y. Gilad, R. Hemo, S. Micali, G. Vlachos, N. Zeldovich

Algorand: Scaling Byzantine Agreements for Cryptocurrencies

MIT CSAIL

Pyca Cryptography Documetation

https://cryptography.io/en/latest/

Andrew Huang, Chang Rey Tang (UCSB) VRF June 12, 2018 20 / 21



Questions?

Andrew Huang, Chang Rey Tang (UCSB) VRF June 12, 2018 21 / 21


	Introduction
	Motivation
	Basic Overview
	Properties
	Contribution
	Implementation
	Parameters
	Citations

