
1

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

Implement and Analyze Exponential Multiplication Algorithms Inside
RSA system

Ke Ni

Abstract

In this report, We study different algorithms
for modular exponentiation, in cryptographic
algorithms and protocols. Since RSA system
is one of the most common cryptographic sys-
tems, we select as well as implement RSA
system and apply different algorithms for the
two basic operations to it. We record real
run time and analyze results of basic operation
algorithms, including those designed for effi-
ciency and others for security, Since the topic
is chosen before homework 3 and homework
4, some parts of this report is included in the
latter part of the class. We also include reports
for further speeding up the multiplication by
parallelization.

1 Modular Exponentiation

In the latter part of the course after choosing our
topics, we happen to study a lot of modular expo-
nentiation algorithms. Here I provide naive imple-
mentations in python as pseudocode in Section 5.
In this section, I briefly introduce these algorithms
in plain text.

brute-force It is a simple algorithm that we sim-
ply use a loop and do mod operation inside loop.
The time complexity is O(n).

binary method In the implementation section
5, we provide left to right binary method imple-
mentation. This algorithm scan from the leftest or
rightest end of binary representation of exponent,
do square and multiplication based on bit values
one at a time. Thus time complexity is O(log n)

the square-and-multiply-always algorithm
One defect of binary method is that binary
method is susceptible to power analysis attack.
For power attack, the attacker analyzes power
consumption of machines, so the attacker can
then obtain exponent part because a ”0” bit lacks

one multiplication in the loop of binary method
compared with a ”1” bit case. The square-and-
multiply-always algorithm avoids this by doing a
dummy multiplication for ”0” bit. Other parts are
the same as binary method. Time complexity is
O(log n).

the Montgomery powering ladder algorithm
(Joye and Yen, 2003) provides sufficient back-
grounds for understanding the Montgomery pow-
ering ladder algorithm. It is an algorithm without
evaluating a relational expression and jumping to
branch. It always square and multiply at each iter-
ation, but the operations are not dummy. Overall,
it is less susceptible to power analysis attack and
fault attack. Time complexity is O(log n).

the atomic square-and-multiply algorithm It
is a variant of square-and-multiply. This method
updates equal to or more than the number of bits
of the exponent. Every iteration does a same set of
operations. Time complexity is O.

2 RSA System

(Rivest et al., 1978) invented RSA algorithm. RSA
system consists of three parts: key generation, en-
cryption and decryption. The procedure is not very
complicated: find two large prime numbers, p and
q, obtain their product, n = p ∗ q, and then choose
a random exponent e < n. Finally we obtain d,
where de = 1(mod φ(n)), where φ is Euler’s to-
tient function. Assume M is message and C is ci-
pher, our encryption and decryption process is

E(M) =M e(mod n) (1)

D(C) = Cd(mod n) (2)

In our experiments, we implement a simple RSA
system to encode and decode messages. (Tem-
plate implementation comes from a github gist
post without any license issue.)

2

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

Method time (s) #call
original 4.246 50
binary 0.173 50

square-and-multiply-always 0.219 50
monPowerLadder 0.260 50

atomic-square-and-multiply 0.174 50
brute-force >100 50

Table 1: Results of our experiments. ”Time” column is
for time spent by the encryption and decryption func-
tion to process a message with 1000 characters.

3 Compare Modular Exponentiation
Algorithm

Table 3 shows results on our implemented naive
RSA system. The original exponentiation is a bi-
nary method which we thought was not efficient,
so we rewrite it in our way. There are many other
improvement we can make for our python imple-
mentation, but here it is enough for us to explore
how modular exponentiation algorithms perform
in the system. As we can see, the results are pro-
portional to time complexity we analyzed. Binary
method (left to right in our implementation) is the
fastest one as we expected because it does fewer
operations than others. Brute-force never stops
during our experiments.

4 Parallelized Algorithms for RSA
system

After comparing differences of different modular
exponentiation algorithms, we would like to fur-
ther improve the results. As we can see in pro-
filing results of our experiments, modular expo-
nent algorithm occupies most of computation re-
sources (cpu time). So it is meaningful for us to
further investigate algorithms to parallelize modu-
lar exponentiation part. (Fadhil and Younis, 2014)
describes several possibilities for the whole RSA
systems.(Emmart et al., 2016) introduces several
algorithms for optimizing modular exponentiation
part. Papers we studied can be categorized into
two branches.

• Split data and do encryption on each data seg-
ment on different cores

• Directly parallelize modular exponentiation

Split Data We studied CUDA language to use
NVIDIA GPU resources online and download
as well as modify code provided by authors of

(Fadhil and Younis, 2014). We got similar re-
sults (speedup factor=10) on our NVIDIA 1080TI
graphics card. It is also intuitive that using multi-
ple cores to encrypt messages and combine them
is an easy but effective way to linearly reduce the
total time.

Optimize Modular Exponentiation Unfortu-
nately, we failed to obtain a good speed up factor
for this branch. Our method can be summarized as
following:

• Split work and then assign to GPU threads
(assume n thread)

• Each thread computes de/n (mod n) with a
modular exponentiation method

• Return results to a main thread and then com-
bine them together.

Our speed up factor is low for this method. We
analyzed our method and find the reason is that bi-
nary methods already reduces the number of iter-
ations to O(n), so divide work based on exponen-
tiation is not effective. Meanwhile, overheads in-
troduced by communication between threads cov-
ers the advantages of splitting work. However,
the second branch can be promising. (Emmart
et al., 2016) optimize modular exponentiation on
NVIDIA graphics card. We did not further inves-
tigate their approach related to utilize special GPU
structures and generate better assembly code for a
great speedup for modular exponentiation. We put
their paper here for readers who are interested.

References

Niall Emmart, Justin Luitjens, Charles Weems, and
Cliff Woolley. 2016. Optimizing modular multipli-
cation for nvidia’s maxwell gpus.

Heba Fadhil and Mohammed Younis. 2014. Paralleliz-
ing rsa algorithm on multicore cpu and gpu. Volume
87:15–22.

Marc Joye and Sung-Ming Yen. 2003. The mont-
gomery powering ladder. In Revised Papers from
the 4th International Workshop on Cryptographic
Hardware and Embedded Systems, CHES ’02, pages
291–302, London, UK, UK. Springer-Verlag.

R. L. Rivest, A. Shamir, and L. Adleman. 1978. A
method for obtaining digital signatures and public-
key cryptosystems. Commun. ACM, 21(2):120–126.

3

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

5 Appendix

5.1 Modular Exponential Python Simple
Implementation

def bruteForce_modExp(m, d, n):
temp = 1
for _ in range(d):

temp = (temp*m)%n
return temp

def left2right_binary(m, d, n):
r0 = 1
d = [int(x) for x in bin(d)[2:]]
k = len(d)
for i in range(k):

r0 = r0**2 % n
if d[i] == 1:

r0 = r0 * m % n
return r0

def always_multiply(m, d, n):
rs = [1, 1]
d = [int(x) for x in bin(d)[2:]]
k = len(d)
for i in range(k):

rs[0] = rs[0]**2 % n
b = 1 - d[i]
rs[b] = rs[b] * m % n;

return rs[0]

def monPowerLadder(m, d, n):
r = [1, m]
d = [int(x) for x in bin(d)[2:]]
k = len(d)
for i in range(k):

b = 1 - d[i]
r[b] = r[0]*r[1] % n
r[d[i]] = r[d[i]]**2 % n

return r[0]

def atomic_square_and_multiply(m, d, n):
r = [1, m]
d = [int(x) for x in bin(d)[2:]]
d.reverse()
k = len(d)
i = k-1
b = 0
while i >= 0:

r[0] = r[0]*r[b] % n
b = b ˆ d[i]
i = i - (not b)

return r[0]

