
Implementation and Benchmarking of Elliptic
Curve Cryptography Algorithms

Yulin Ou
yulin_ou@umail.ucsb.edu

Department of Electrical and Computer Engineering
University of California Santa Barbara

June 13, 2017

Abstract

This paper will investigate how to implement the classical Elliptic Curve
Cryptography and two variants: Elliptic Curve Discrete Signing Algorithm
(ECDSA) and the Elliptic Curve Diffie-Hellman (ECDH) key-exchange. Both
algorithm will be implemented in Python programming language. To present a
detailed test methodology, this paper will perform test of algorithms based on
the same curve representations: Weierstrass curves. Furthermore, this article
will evaluate the efficiency of different algorithms in breaking the security of
these algorithms.

1 Introduction

Public-key cryptography makes it possible to create digital signatures and do key
negotiation, which is essential for todays commercial and governmental online com-
puter systems. Elliptic curve cryptography (ECC) is a popular method to implement
public-key cryptography. Compared to other modular arithmetic systems such as
the Rivest-Shamir-Adleman algorithm (RSA), ECC has low computational complex-
ity, which provides equivalent security, but only requires smaller keys compared to
non-ECC cryptography.
This article will investigate the algorithm of ECC[2] and its variants: Elliptic Curve
Diffie-Hellman (ECDH) and Elliptic Curve Discrete Signing Algorithm (ECDSA)[1].
Then implementing ECDH and ECDSA in Python. Finally, comparing the efficiency
of two popular algorithms for breaking this discrete logarithm problem.

2 Elliptic curve cryptography

Elliptic curves (EC) can be applied to many mathematical problems. This section
will introduce the EC for usage in cryptography. The elliptic curve(E) is presented

1



as the following: Elliptic curve is the graph given by the equation usually named the
short Weierstrass equation:

y2 = x3 + ax2 + b,where4a3 + 27b2 6= 0

Depending on the value of a and b, elliptic curves may assume different shapes on
the plane. As it can be easily seen and verified, elliptic curves are symmetric about
the x-axis.
Public-key cryptography is based on the intractability of certain mathematical prob-
lems. Early public-key systems are secure assuming that it is difficult to factor a
large integer composed of two or more large prime factors. For elliptic-curve-based
protocols, Elliptic Curve Discrete Logarithm Problem (ECDLP) assumes that finding
the discrete logarithm of a random elliptic curve element with respect to a publicly
known base point is infeasible. The security of elliptic curve cryptography depends
on the ability to compute a point multiplication and the inability to compute the
multiplicand given the original and product points. The size of the elliptic curve
determines the difficulty of the problem.

1. The private key is a random integer d chosen from {1, ..., n− 1} , where n is
the order of the subgroup.

2. The public key is the point H = dG, where G is the base point of the subgroup.

If we know d and G, along with the other domain parameters. Finding H will not
spend a lot of time. But if we only know H and G, it will be hard to find the private
key d. Since it requires to solve discrete logarithm problem. In the next section, we
are going to describe two public-key algorithms based on that: ECDH (Elliptic curve
Diffie-Hellman), which is used for encryption, and ECDSA (Elliptic Curve Digital
Signature Algorithm), used for digital signing.

3 Elliptic curve Diffie-Hellman

ECDH is a variant of the Diffie-Hellman algorithm for elliptic curves. It basically
means that ECDH defines how keys should be generated and exchanged between
parties. Its actually a key-agreement protocol. It solves the following problem: two
parties (Alice and Bob) want to exchange information securely, while a third party
(the Man In the Middle) may intercept them, but may not decode them. This is one
of the principles behind Transport Layer Security (TLS). The Diffie-Hellman problem
is described below:

1. Alice and Bob generate their own private and public keys. Private key dA and
public key HA = dAG for Alice, and private key dB and HB = dBG for Bob.
Both Alice and Bob use the same domain parameters: the same base point G
on the same elliptic curve on the same finite field.

2



2. Alice and Bob exchange their public key HA and HB over an insecure channel.
The Man In the Middle intercept HA and HB, but will mot find out neither dA
and dB without solving the discrete logarithm problem.

3. Alice calculates S = dAHB by using her own private key ad Bobs public key,
and Bob calculates S = dBHA by using his own private key and Alices public
key. S is the same for both Alice and Bob.

S = dAHB = dA(dBG) = dB(dAG) = d)BHA

However, the Man in Middle only knows HA and HB together with the other domain
parameters and would not be able to find out the shared secret S. The Diffie-Hellman
problem for elliptic curves is assumed to be a ”hard” problem. Since it is believed to
be spend a lot of time to solve as the discrete logarithm problem. One way to solve
the logarithm problem is solving the Diffie-Hellman problem.
Implementing ECDH in Python to compute public / private keys and shared secrets
over an elliptic curve. We choose the curve secp256k1, which is also used by Botcoin
of digital signatures. Domain parameters are listed below:

• p = 0xffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fffffffe fffffc2f

• a = 0

• b = 7

• xG = 0x79be667e f9dcbbac 55a06295 ce870b07 029bfcdb 2dce28d9 59f2815b
16f81798

• yG = 0x483ada77 26a3c465 5da4fbfc 0e1108a8 fd17b448 a6855419 9c47d08f
fb10d4b8

• n = 0xffffffff ffffffff ffffffff fffffffe baaedce6 af48a03b bfd25e8c d0364141

• h = 1

Figure 1 shows the result of implementing the python script of ECDH. We generate
Alice and Bobsecret keys and compute their public keys respectively. After exchange
their public keys, they can calculate the shared secret. Now that Alice and Bob have
obtained the shared secret, they can exchange data with symmetric encryption.

Figure 1: Implementation of ECDH

3



4 Elliptic Curve Digital Signature Algorithm

ECDSA is a variant of the Digital Signature Algorithm applied to elliptic curves.
ECDSA works on the hash of the message, rather than on the message itself. The
choice of the hash function is up to us, but it should be a cryptographically-secure
hash function. The hash of the message ought to be truncated so that the bit length
of the hash is the same as the bit length of n (the order of the subgroup). The
truncated hash is an integer and will be denoted as Z.
The scenario is the following: Alice wants to sign a message with her private key dA,
and Bob wants to validate the signature using Alices public key HA. Nobody but Alice
should be able to valid signature. Everyone should be able to check signature. Figure
2 shows the output of implementing ECDSA in Python.The algorithm performed by
Alice is described below:

1. Take a random integer k chosen from {1, , n1}, where n is still the subgroup
order.

2. Calculate the point P=kG, where G is the base point of the subgroup.

3. Calculate the number r = xP mod nwhere xP is the coordinate of P.

4. If r=0, then choose another k and try again.

5. Calculate s = k−1(z + rdA) mod n, where dA is Alice’s private key and k−1 is
the multiplicative inverse of k modulo n.

6. If s=0, then choose another k and try again.

Figure 2: Implementation of ECDSA

4



5 Attack method

There are two efficient algorithms for computing discrete logarithms on elliptic curve[3]:
the baby-step, giant-step algorithm, and Pollardś rho method. The definition of the
discrete logarithm problem is: Given two points P and Q, find out the integer x that
satisfies the equation Q = xP .

(a) Baby-step, giant-step
The consideration behind Baby-step, giant-step algorithm is that we can always write
any integer x as x = am+ b, where a, m and b are three arbitrary integers. With this
in mind, we can rewrite the equation for the discrete logarithm problem as follows:

Q− amP = bP

. Contrary to the brute-force attack, which forces us to calculate all the points xP for
every x until we find Q, we will calculate fewer value before we find a correspondence.
The algorithm works as follows:

1. Calculate m = d
√
ne

2. For every b in 0,,m, calculate bP and store the results in a hash table.

3. For every a in 0,,m:

• Calculate amP ;

• Calculate Q− amp;

• Check the hash table and look if there exist a point bP such that QamP =
bP ;

• If such point exists, then we have found x = am + b.

Initially we calculate the points bP with little (i.e. ”baby”) increments for the coef-
ficient b(1P, 2P, 3P, ...). Then in the second part of the algorithm, we calculate the
points amP with huge (i.e. ”giant”) increments for am(1mP, 2mP, 3mP, ...).Once a
match is found, calculating the discrete logarithm is a matter of rearranging terms.
This algorithm has both time and space complexity O(

√
n). It’s still exponential

time, but much better than a brute-force attack.

(b) Pollardś rho
Pollard’s rho is another algorithm for computing discrete logarithms. It has the
same asymptotic time complexity O(

√
n of the baby-step giant-step algorithm, but

its space complexity is O(1). Baby-step giant-step can’t be used in practice, because
of the huge memory requirements. Compare with Baby-step giant-step, Pollard’s rho
requires very few memory. With Pollard’s rho, we need to solve a different problem:
Given P and Q, find the integers, a, b , A and B such that aP +bQ = AP +BQ.Once
the four integers are found, we can find out x = (a−A)(B−b)−1 mod n. The principle
of Pollardś rho is simple: we define a pseudo-random sequence of (a,b) pairs. This
sequence of pairs can be used to generate the sequence of points aP + bQ. Since

5



both P and Q are elements of the cyclie subgroup, the sequence of points aP + bQ is
cyclic too. FInally, we will find a pair (a,b)and another distinct pair (A,B) such that
aP + bQ = AP + BQ.

(c) Comparison of Different Attacking Algorithms
Figure 3 shows the output of implementing ECDSA in Python.Obviously, the brute-
force method is tremendously slow if compared to the others two algorithms. Baby-
step giant-step is the faster, while Pollard’s rho is more than three times slower than
baby-step giant-step. Then examining he number of steps: brute force used 5193 steps
on average for computing each logarithm. Baby-step giant-steps and Pollard’s rho
used 152 steps and 138 steps respectively, two numbers very close to the

√
10331 =

101.64.

Figure 3: Comparison of brute-force, baby-giant-step and pollardsrho

6 Conclusions

Elliptic Curve Cryptography (ECC) is one of the most powerful but least understood
types of cryptography in wide use today. The aim for this article is to investigate
the algorithms and performance of ECDH and ECDSA. It’s important to be bear in
mind that algorithms can be greatly optimized in many ways such as improvements
in hardware. An approach seems impractical today does not mean that this approach
will not work in the future. And in the future, there may exists better algorithms. For
example, a quantum algorithm , Shor’s algorithm, is capable of computing discrete
logarithms in polynomial time.

References

[1] Olav Wegner Eide. Elliptic curve cryptography-implementation and performance
testing of curve representations. 2017.

[2] Darrel Hankerson, Alfred J Menezes, and Scott Vanstone. Guide to elliptic curve
cryptography. 2006.

[3] ÇK Koç. Cryptographic engineering (2009).

6


