
Secure Database Techniques in Encrypted Database
Systems

Ryan Su
pinwensu@cs.ucsb.edu

June 2018

Abstract

In the era of big data, there is an increasing need to store huge amount
of private data. Database security becomes extremely crucial and many En-
crypted Database Systems (EDB) has been proposed. CryptDB is widely used
in these systems. This paper explores the performance of such systems as well
as some of the key schemes in secure database techniques, i.e. CryptDB, the
threats it addresses, SQL-aware Encryption including Deterministic Encryp-
tion(DET) and Order-Preserving Encryption (OPE). Additionally, we looked
into interference attacks on DET-encrypted attributes.

1 Introduction

With an increasing amount of private data being collected nowadays, database is
widely used by companies, government and even individuals. Thus, database security
is a crucial topic in the area of Cryptographic Engineering. As a result, many en-
crypted database systems have been proposed. Most of them are based on the design
of CryptDB.

CryptDB[8] provides confidentiality for applications on database management sys-
tems (DBMS). It consists of a DBMS server and a separate application server and
executes queries over encrypted data. CryptDB prevents database administrators
from learning private data and stops adversaries from taking complete control of ap-
plication and DBMS servers. It overcomes the challenges of minimizing the amount of
confidential information revealed to the DBMS server and the amount of data leaked
when an adversary compromises the application server in addition to the server.

Popular approaches to search on encrypted data includes searchable symmetric en-
cryption (SSE)[3, 10], fully-homomorphic encryption (FHE) [9], oblivious RAMs

1



(ORAM)[5], and property-preserving encryption (PPE)[1, 2]. There is a trade-off
between security and efficiency. CryptDB is largely based on property-preserving
encryption(PPE). PPE is an encryption scheme that leaks a certain property of the
plaintext. Some of the popular property-preserving encryption methods include De-
terministic(DET) and order preserving encryption(OPE).

This tutorial paper is focused on some of the key schemes in secure database tech-
niques. Chapter 2 explores CryptDBs architecture and the key ideas used in overcom-
ing the challenges as well as the two threat models addressed by CryptDB. Chapter
3 discusses encryption types used by CryptDB and the security property. Case study
and performance analysis are included in Chapter 4. Chapter 5 deals with concrete
inference attacks against DET based systems on the CryptDB design.

2 CryptDB

CryptDB is an implementation that allows query processing over encrypted databases.
The database is managed by the cloud provider, but database items are encrypted
with keys that are only known by the data owner.

2.1 Architecture

Figure 1: CryptDB Onion encryption layers[8]

CryptDB is a layered architecture; each has 4 layers (onions). The encryption of
a data in the database is computed in a layered way. Figure 1 shows the Onion
encryption layers and the classes of computation they allow. The terms will be
explained in Chapter 3. Onion names stand for the operations they allow at some of
their layers. There are four different main goals to achieve, and for each goal there
exists a different layered particle, which is called as onion: EQ, ORD, SEARCH and
ADD onion. In practice, some onions or onion layers may be omitted, depending on
column types or schema annotations provided by application developers.

2



Figure 2: CryptDBs architecture[8]

CryptDBs architecture and threat models are shown in Figure 2. It consists of a
database proxy and an unmodified DBMS. In the DBMS, user-defined functions
(UDFs) are used to perform cryptographic operations. In Figure 2, processes are
represented by rectangular boxes and data is represented by rounded boxes. Com-
ponents added by CryptDB are shaded. The separation between users computers,
the application server, CryptDB proxy server and the DBMS server is represented
by dashed lines. CryptDB addresses two threats. It prevents database administra-
tors from learning private data and stops adversaries from taking complete control of
application and DBMS servers.

2.2 Key Ideas in Addressing Threats

The two kinds of threats are shown as dotted lines in Figure 2. In threat 1, a curious
database administrator(DBA) with complete access to the DBMS server snoops on
private data. In threat 2, an adversary gains complete control over both the software
and hardware of the application, proxy, and DBMS servers.

Threat 1: DBMS Server Compromise[8]. The assumption is that DBA wants
to get private data without changing queries. This threat is increasingly important
with the rise of database in companies and outsourcing of databases. It includes
DBMS software compromises, root access to DBMS machines, and even access to the
RAM of physical machines. The approach that prevents such threat is to executing
SQL queries over encrypted data on the DBMS server. CryptDB prevents the DBA
from learning private data. The proxy uses secret keys to encrypt all data inserted
or included in queries issued to the DBMS. By using SQL-aware encryption that
adjusts dynamically to the queries presented, only relationships among data items
that correspond to the classes of computation that queries perform are revealed.
Such queries include comparing equality, sorting or searching. CryptDB guarantees
that sensitive data is never available in plain text at DBMS. The type of queries
determines how much information is revealed to the DBMS server. Nothing about
the data content will be revealed if no relational predicate filtering on a column is
requested. If the application requests equality checks on a column, CryptDBs proxy
reveals which items repeat in that column, but not the actual values. If the application
requests order checks on a column, the proxy only reveals the order of the elements
in the column. Furthermore, DBMS server cannot compute the encrypted results for

3



queries that involve computation classes not requested by the application.

Threat 2: Adversary gaining complete control of servers. In this type of
threat, application server, proxy, and DBMS server infrastructures may be compro-
mised arbitrarily. Thus, the approach for previous threat is not applicable here. The
solution is to encrypt different data with different keys. Developers annotate their
SQL schema to define different principals, whose keys will allow decrypting different
parts of the database. CryptDB leaks at most the data of currently active users
for the duration of the compromise. Data of currently inactive users would remain
confidential because it has been encrypted with keys not available to the adversary.

There are two challenges in combating these threats. The first one is to minimize
the amount of confidential information revealed to the DBMS server and the second
one is to minimize the amount of data leaked when an adversary compromises the
application server in addition to the server. The application must be able to ac-
cess decrypted data since arbitrary computation on encrypted data is not practical.
CryptDB exploits the following three key ideas to overcome these challenges.

• Executing SQL queries over encrypted data[8]. This is achieved by using
a using a SQL-aware encryption strategy. Such encryption strategies will be
discussed later in this tutorial. All SQL queries are made up of equality checks.
Based on this fact, CryptDB encrypts each data item in a way that allows
the DBMS to execute on the transformed data. This could be achieved by
adapting known encryption schemes for equality and additions and using a
new privacy preserving method for joins. The reason why CryptDB is efficient
is that it mainly exploits symmetric-key encryption and runs on unmodified
DBMS platforms.

• Adjustable query-based encryption[8]. There are certain encryption schemes
that are required to process certain types of queries, even though they might
leak more information about the data to the DBMS server. CryptDB carefully
adjusts the SQL-aware encryption scheme for any given data item, depending
on the queries observed at run-time. Doing so makes sure that possible en-
cryptions of data will not be all revealed to the DBMS. Onions of encryption
are used to address these adjustments, which is a novel way to avoid expensive
re-encryptions. It can also store multiple ciphertexts within each other in the
database.

• Chain encryption keys to user passwords[8].This enables that each data
item in the database can be decrypted only through a chain of keys rooted in the
password of one of the users with access to that data. Compromised as the server
is, there is no way that the adversary can decrypt the users data if he doesn’t
know the password or if the user is not logged into the application. CryptDB
allows the developer to provide policy annotations over the applications SQL
schema. It also specifies which users have access to each data item.

4



3 SQL-aware Encryption

Random (RND) This is the scheme that provides the maximum security in CryptDB.
In this probabilistic scheme, two equal values are mapped to different ciphertexts with
overwhelming probability. In addition, it does not allow any computation to be per-
formed efficiently on the ciphertext. An efficient construction of RND is to use a
block cipher like AES or Blowfish in CBC mode together with a random initialization
vector (IV).

Deterministic (DET) A symmetric DTE scheme DTE = (Gen,Enc,Dec) is a
symmetric encryption scheme. Enc is not randomized and each message m is mapped
by Enc to a single ciphertext under a key K. DET scheme provides a slightly weaker
guarantee compared to RND but it still provides strong security. The main reason is
that it leaks only which encrypted values correspond to the same data value. This is
achieved by generating the same ciphertext for the same plaintext deterministically.
This encryption layer allows the server to perform equality checks. DET is a pseudo-
random permutation (PRP) [4].

Homomorphic encryption (HOM) This is a secure probabilistic encryption scheme
that allows server to perform computations on encrypted data. The result will
be decrypted at the proxy after computation. Unfortunately, fully homomorphic
encryption[6], is very inefficient. What it did in CryptDB is to enable HOM for spe-
cific operations. HOM can also be used for computing averages by having the DBMS
server return the sum and the count separately.

Order-preserving encryption (OPE) OPE is a weaker encryption scheme than
DET because it reveals order. A symmetric OPE scheme OPE = (Gen,Enc,Dec)
is a symmetric encryption scheme with the following property: if m1 > m2, then
EncK(m1) > EncK(m2); if m1 = m2, then EncK(m1) = EncK(m2);if m1 < m2,
then EncK(m1) < EncK(m2). CryptDB proxy will only reveal OPE-encrypted
columns to the server if users request order queries on those columns. It also in-
cludes a hypergeometric sampler that lies at the core of OPE.

Join (JOIN) Since we use different keys for DET to prevent cross-column corre-
lations, we need a separate encryption scheme to allow equality joins between two
columns. Thats why we have Join. Moreover, it also supports all operations al-
lowed by DET, and also enables the server to determine repeating values between
two columns.

Word search (SEARCH)[8] SEARCH is almost as secure as RND. It does not
reveal if a certain word repeats in multiple rows, but leaks the number of keywords
encrypted. An adversary may estimate the number of distinct or duplicate words.
SEARCH is used to perform searches on encrypted text to support operations. For
each column needing SEARCH, the text are split into keywords using standard de-
limiters before removing repetition in these words. This is achieved by randomly

5



permuting the positions of the words and encrypting each of the words to the same
size. SEARCH allows CryptDB to only perform full-word keyword searches and it
does not support arbitrary regular expressions.

4 CryptDB Performance Analysis

Popa et al.[8] implemented implemented versions for both Postgres 9.0 and MySQL
5.1. The CryptDB proxy consists of a C++ library and a Lua module. In this
chapter, we will dive into the performance of CryptDB in different applications. They
evaluated TPC-C queries, SQL queries from sql.mit.edu to evaluate what columns,
operations and queries CryptDB supports. See the results in Figure 3.

Figure 3: Steady-state onion levels for database columns[8]

Functional

The number of columns in the needs plaintext column counts columns that cannot
be processed in encrypted form by CryptDB. According to the table, it is quite
small relative to the total number of columns. For the applications in the top group
of rows, sensitive columns were determined manually, and only these columns were
considered for encryption. For the bottom group of rows, all database columns were
automatically considered for encryption. We can also see that CryptDB will only
support queries on certain sensitive fields that perform string or data manipulation if
they were precomputed standalone columns. needs HOM and needs SEARCH means
the number of columns for which that encryption scheme is needed to process some
queries. It indicates that CryptDB is not able to support those queries without the
schemes. Furthermore, CryptDB is able to process queries over encrypted data over
about 99.5% of the columns.

Security

To evaluate security of CryptDB, amount of information that would be revealed to
the adversary is examined. This is achieved by examining the steady-state onion
levels of different columns among applications. The MinEnc of a column is defined to

6



be the weakest onion encryption. Such definition makes possible quantifying the level
of security. As described in Chapter 3. RND and HOM are considered the strongest
schemes, followed by SEARCH, DET, JOIN and OPE. Now let’s look back Figure 3
above. The right side shows the MinEnc onion level for a range of applications and
query traces. It is clear that most of the fields remain at RND. Quite some remains at
DET, mainly those for looking up and joins. OPE occurs with least frequency mainly
because leaks orders. We can conclude that there is an improvement By CryptDB in
encryption scheme confidentiality.

RND, HOM and DET for columns without repetition are refined to be security level
HIGH. The rightmost column shows the applications most sensitive database columns
and the number of them that have MinEnc in HIGH. From the quieres that they
picked, 93% of them remain at DET or above, which is a very high number. In
addition, CryptDB reveals much less information about these columns containing
password or private information, almost all of them are at RND or DET.

Figure 4: Throughput of different types of SQL queries[8]

Performance

It is found that the overall throughput with CryptDB is around 25% lower than
MySQL, depending on the exact number of cores. Figure 4 includes the throughput
given different types of SQL queries for MySQL, CryptDB, and strawman design.
Upd. inc stands for UPDATE that increments a column, and Upd. set is when
columns are set to a constant. We can conclude from the figure that CryptDB per-
forms the worst on queries involves HOM additions, and relative better on other
types of queries. Regarding the latency, there is an overall server latency increase of
20% with CryptDB proxy. Since most of our schemes are efficient, the cryptographic
overhead is relatively small.

7



5 Inference Attacks on DET-Encrypted Attributes

There are two common types of attacks on DET-Encrypted Columns, Frequency
analysis and lp-optimization attacks.

Frequency Analysis is the basic and well-known inference attack. It is used to
break deterministically-encrypted columns. Given a DET-encrypted column c over
Ck and an auxiliary dataset z over Mk, the attack works by assigning the ith most
frequent element of c to ith most element of z. Define ψ= Hist(c) and π= Hist(z)
Assumptions are that for all i 6= j,ψi 6= ψj and πi 6= πj. In the worst-case, each
tie will be broken erroneously and induce an error in the assignment. The attack is
defined as:

Frequency-An(c,z)[7]:
1: compute ψ ← vSort(Hist(c))
2: compute π ← vSort(Hist(z))
3: output α : Ck →Mk such that

α(c) =

{
π[Rankψ(c)], if c∈ c

⊥, if c 6∈ c
(1)

lp-optimization is parameterized by the lp norms. The basic idea is to minimize the
total mismatch in frequencies by finding an assignment from ciphertexts to plaintexts
that minimizes lp distance between the histograms of the datasets. Given a DET-
encrypted column c over Ck and an auxiliary dataset z over Mk. Define ψ= Hist(c)
and π= Hist(z). It then finds the permutation matrixX that minimizes the lp distance
between the ciphertext histogram ψ and the permuted auxiliary histogram X · π.The
attack is defined as follows:

lp-optimization(c,z)[7]:
1: compute ψ ← vSort(Hist(c))
2: compute π ← vSort(Hist(z))
3: output argminX∈PN

‖ψ −X · π‖p

Naveed et al.[7] focused on lp-optimization attacks on data from the National Inpa-
tient Sample (NIS) database of the Healthcare Cost and Utilization Project (HCUP),
which includes database includes attributes such as age, drugs, procedures, diagno-
sis, length of stay, etc[11]. In their experiment, subset of 1050 hospitals in the 2009
HCUP/NIS database is used. They identify whether a column is DET based by
checking whether OpenEMR supported equality queries on the attribute. Frequency
and lp-optimization attacks on sex, mortality risk, admission source, major diagnostic

8



category, age and length of stay. All the attacks take less than a fraction of a second
per hospital. The accuracy of the attack is computed as the number of encrypted
cells for which the recovered plaintext matches the ground truth, divided by the total
number of column cells.

Figure 5: Results of lp-optimization on DET-encrypted columns on 200 largest
hospitals[7]

Figure 5 shows the result of the attack on DET-encrypted columns on 200 largest
hospitals with 2009 HCUP/NIS as target data and 2004 HCUP/NIS as auxiliary
data. The plot shows the empirical Complementary Cumulative Distribution Func-
tion, which means a point at location (x, y) indicates that we correctly recovered at
least x fraction of the records for y fraction of the hospitals in the target data. Moral-
ity passes (0.99, 1.0), which means it is able to recover 99% of the patients for all of
the hospitals. For attribute Race, at least 60% of the patients for at least 69.5% of
the hospitals is gained. Admission Source for at least 90% of the patients for 38% of
the hospitals, etc. According to the plot, attacks recover a substantial fraction of the
encrypted columns, even for attributes with a large number of distinct values such as
Age and Length of Stay. It recovered Age for at least 10% of patients for 84.5% of the
hospitals. The key point for the good performance results from auxiliary information.

6 Conclusions

This tutorial paper deals with secure database techniques in Encrypted Database
Systems. CryptDB is an implementation that allows query processing over encrypted
databases. It provides confidentiality for applications on those systems by address-
ing two threats, DBMS Server Compromise and Adversary that gains complete con-
trol of application and DBMS servers. The key ideas are executing SQL queries
over encrypted data, adjustable query-based encryption and chain encryption keys to
user passwords. A group of SQL-aware Encryptions are widely used these systems.

9



RND and HOM are considered the strongest schemes, followed by SEARCH, DET,
JOIN and OPE. CryptDB can support operations over encrypted data for 99.5%
of the columns seen in the performance test while maintaining modest throughput
penalty. CryptDB also protects most sensitive attributes with highly secure encryp-
tion schemes. The study of interference attacks shows that lp-optimization can de-
crypt a large fraction of cells from DET-encrypted columns as long as appropriate
auxiliary information is available.

References

[1] Mihir Bellare, Alexandra Boldyreva, and Adam ONeill. Deterministic and effi-
ciently searchable encryption. In Annual International Cryptology Conference,
pages 535–552. Springer, 2007.

[2] Alexandra Boldyreva, Nathan Chenette, Younho Lee, and Adam Oneill. Order-
preserving symmetric encryption. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques, pages 224–241. Springer,
2009.

[3] Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostrovsky. Searchable
symmetric encryption: improved definitions and efficient constructions. Journal
of Computer Security, 19(5):895–934, 2011.

[4] Oded Goldreich. Foundations of cryptography: volume 2, basic applications.
Cambridge university press, 2009.

[5] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on
oblivious rams. Journal of the ACM (JACM), 43(3):431–473, 1996.

[6] Shai Halevi and Phillip Rogaway. A tweakable enciphering mode. In Annual
International Cryptology Conference, pages 482–499. Springer, 2003.

[7] Muhammad Naveed, Seny Kamara, and Charles V Wright. Inference attacks
on property-preserving encrypted databases. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, pages 644–655.
ACM, 2015.

[8] Raluca Ada Popa, Catherine Redfield, Nickolai Zeldovich, and Hari Balakrish-
nan. Cryptdb: protecting confidentiality with encrypted query processing. In
Proceedings of the Twenty-Third ACM Symposium on Operating Systems Prin-
ciples, pages 85–100. ACM, 2011.

[9] Nigel P Smart and Frederik Vercauteren. Fully homomorphic encryption with
relatively small key and ciphertext sizes. In International Workshop on Public
Key Cryptography, pages 420–443. Springer, 2010.

10



[10] Dawn Xiaoding Song, David Wagner, and Adrian Perrig. Practical techniques
for searches on encrypted data. In Security and Privacy, 2000. S&P 2000. Pro-
ceedings. 2000 IEEE Symposium on, pages 44–55. IEEE, 2000.

[11] Claudia Steiner, Anne Elixhauser, and Jenny Schnaier. The healthcare cost and
utilization project: an overview. Effective clinical practice: ECP, 5(3):143–151,
2002.

11


