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Abstract

Side channel attacks (SCAs) have gained a large amount of attention in cryptog-
raphy world in the past decades. An adversary may effectively reveal secret keys
and sensitive data using leaking signals which are emitted from physical cryp-
tographic devices, including power consumption, electromagnetic radiation and
response times. For profiled side-channel attacks, template attack (TA) and ma-
chine learning based attack are two popular categories of approaches. While the
most commonly used template attacks focus more on high-dimensional statisti-
cal modelling under Gaussian noise assumptions, machine learning encompasses
tools to solve problems in more flexible scenarios and provides more efficient ap-
paratus for side-channel attacks. The underlying intuition is that, recovering secret
keys from side signals in cryptography is similar to learning target function from
sampled data in machine learning. In this survey, we will go through applicable
machine learning methods which has been found to perform efficiently in side
channel attacks.

Side channel attacks are well known nowadays and has traditionally been exploited with simple
power analysis (SPA) and differential power analysis (DPA) [1]. While SPA and DPA have dif-
ficulties in varying keys and overlapping complicated signals, template attack (TA) and machine
learning based attack (MLA) are potential alternatives to extract secret keys under more flexible con-
ditions, and further have shown their success in attacking smart-card running DES [2] or (masked)
AES [3, 4]. In this review, we will first describe how template attack works in a general SCA setting
and a specific version of TA under particular multivariate Gaussian assumptions. Next we intro-
duce machine learning techniques used in MLA, such as dimension reduction for leakage traces
and binary classification for secret key bits. Though template attack can be thought of a machine
learning approach as well, here we refer to template attack and other machine learning based attack
separately in a sense that TA is parametric and MLA is nonparametric.

1 Template Attack

Template attack has been introduced by Chari [5] and improved to more efficient implementations.
Intuitively, the larger amount of information we acquire from cryptographic devices, the more pre-
cise is the model of power consumption that we can estimate. Thus the fundamental assumption of
template attack is that positions of leakage trace vectors closely correlate with the plaintext and key
values that generated them. Notice that it is difficult to obtain enough training profiling traces from
a targeted device, a clone device becomes an alternative information source, which should be very
similar to the targeted device and kept under control of the adversary for the convenience of data
acquisition. The first stage of TA will be performed on the clone device, and the learned model will
be used for the second stage of TA on the targeted device.
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Problem Setting: Consider a real device that runs an encryption or decryption algorithm on a
known plaintext p ∈ T with a D-bit binary secret key k ∈ K = {0, 1}D which is stored on the
device and generates a targeted intermediate signal y(p, k). The mapping y maps the plaintext (or
the ciphertext) and the private key to a value which forms the deterministic or ground-truth part of a
leakage signal, for instance, power consumption signal, or AES S-box outputs during the first round:

y(p, k) = Sbox[p⊕ k] (1)

where Sbox[·] is a non-linear substitution operation. The measured leakage signal x is generated by
a device-specific unknown function ϕ and an independent additive noise r as follows:

x(p, k) = ϕ(y(p, k)) + r (2)

For this particular pair of plaintext p and key k, an adversary will track down the leakage signal
from the clone device through m measurements (as simulated in Fig. 1), which in result is denoted
as a high-dimensional leakage trace vector x(p, k) ∈ Rm in the Euclidean space. For each key, the
adversary will perform such trace recording process for n times and form a set of training profiling
traces Xa(p, k) = {xi(p, k) ∈ Rm : i = 1, · · · , n} in order to estimate a leakage model as
P[x(p, k)|θ(p, k)], where θ(p, k) completely specifies the probability distribution P and is named
as a ”template”.

Figure 1: The diagram of a possible leakage simulator [6] used in template attack. Each time,
sample xi(t) ∈ R (which is an entry of leakage trace vector xi ∈ Rm) is defined as the sum of
a deterministic part representing the intermediate value during encryption and a random Gaussian
noise. The deterministic part of leakage signal corresponds to the output of S-box, iterated for each
time sample. The adversary can record leakage traces with a particular sampling frequency.

General TA Approach: The template attack consists of two stages: the profiling phase (which is
not presented in DPA) and the attacking phase, which are known as training and testing in statistical
learning paradigm. In the profiling phase, the model parameters will be estimated from acquired
traces Xa(p, k) through maximum likelihood approach. For a given pair of (p, k), we have

θ̂(p, k) = arg max
θ

Πx∈Xa(p,k)P[x(p, k)|θ(p, k)] (3)

Since the adversary obtains more than one pair of plaintext and secret key, a set of template {θ̂(p, k) :
p ∈ T, k ∈ K} will be built in the same manner. Next, in the attacking phase, the adversary will
monitor both the input plaintext p∗ to the targeted device and the leakage signal x∗. As the plaintext
is known in advance, the adversary will gain more information about the secret key k∗ by estimating
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the posterior probability P[θ̂(p∗, k)|x∗] under the Bayes’ rule:

k̂ = arg max
k∈K
P[θ̂(p∗, k)|x∗] (4)

= arg max
k∈K

P[x∗|θ̂(p∗, k)]P[θ̂(p∗, k)]

P(x∗)
(5)

= arg max
k∈K
P[x∗|θ̂(p∗, k)]P[θ̂(p∗, k)] (6)

where the apriori probability P[θ̂(p∗, k)] should be estimated or assigned by the adversary and is
set as a uniform distribution if there is no prior knowledge on it. The optimal k̂ is picked so that it
maximizes the probability that template θ(p∗, k̂) occurred.

Multivariate Gaussian Case: The most commonly used distribution used in template attack is
multivariate normal distribution by which the time sample are assumed to be independent. In detail,
if we assume P follows multivariate normal distribution N (x|k;µp,k,Σp,k), then the likelihood of
a trace x originating from (p, k) can be written as:

P[x(p, k)|θ(p, k)] = ((2π)m|Σp,k|)−1/2 exp

(
−1

2
(x− µp,k)TΣ−1p,k(x− µp,k)

)
(7)

whereµp,k and Σp,k are respectively the underlying mean vector and covariance matrix ofm-variate
traces associated with (p, k). Thus in the profiling phase, one can compute the maximum likelihood
estimation of µp,k and Σp,k by:

µ̂p,k =
1

n

n∑
i=1

xi(p, k) (8)

Σ̂p,k =
1

n− 1

n∑
i=1

(xi(p, k)− µ̂p,k)T (xi(p, k)− µ̂p,k) (9)

Once the profiling phase is done, the attack phase allows the adversary to monitor an input plaintext
p∗ and to classify an observed trace x∗ which is currently unclear on its correspond secret key k∗.
If we assume P[θ̂(p∗, k)] is uniform, then the attacking step is reduced to choose k̂ with maximum
likelihood N (x∗|k̂;µp∗,k̂,Σp∗,k̂).

Discussions: A choice of the proper underlying distribution for leakage signals has also been in-
vestigated in other works. The original TA paper suggests multivariate Gaussian distribution and
is thus parameterized by its mean and covariance. Meanwhile, the adversary still needs to validate
the multivariate normal hypothesis through some statistical tests in the literature, for instance, the
kurtosis test [7] (based on the kurtosis estimation) or the Mardia’s test [8] (based on skewness and
kurtosis measures). However, the normality assumption is too restrictive in most cases and may not
be truly necessary for side channel attacks. In the next section we will show how other machine
learning approaches tackle this problem without specific distribution assumptions.

Recent works have proposed improved implementations to overcome its statistical difficulties and
high computational complexity. One improving direction would be to calculate the logarithm of the
multivariate normal distribution, so that the smallest absolute value of log-likelihood indicates the
correct secret key [9]. The other improved point is, instead of using a separate covariance matrix
per secret key, one can use a pooled covariance matrix for all possible secret keys [10], by which
Σ(p) = Σ(p, k1) = Σ(p, k2) = · · · = Σ(p, k|K|) and it is possible to pool the covariance estimates
into a pooled covariance matrix as well:

Σ̂p,k =
1

|K|(n− 1)

∑
k∈K

n∑
i=1

(xi(p, k)− µ̂p,k)T (xi(p, k)− µ̂p,k). (10)

The pooled covariance primarily captures noise in leakage signal which shows no correlation with
secret keys but is correlated across traces. Eventhough these implementations work well in practice
for short traces, TA presents shortcomings in configurations characterized by long traces since para-
metric Gaussian is ill-posed in very high dimensions. The common solution would be to first apply
dimensionality reduction techniques and then analyze in resulting embedded space.
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2 Machine Learning Based Attacks

When the Gaussian leakage assumption is relaxed, there is no way to compute templates for the
leakage. A recent line of works [11, 12, 6, 4] has investigated this distribution-agnostic setting based
on machine learning techniques that exploit discriminating criteria to build classifications directly
from the raw or dimension reduced dataset.

Dimension Reduction: To overcome the curse of high dimensionality in the analysis of leakage
traces, dimension reduction is a necessary preprocessing step that speeds up the learning process,
reduces the storage space and improves the quality of models. One of the most popular approaches,
principle component analysis (PCA) [13] has been used in SCA by Archambeau [14]. PCA first
projects leakage trace vectors into a new set of uncorrelated directions, named principle components,
and then selects several most variant components which by assumption contains the largest amount
of information. Other alternative dimension reduction algorithms can be considered as well, such as
minimum redundancy maximum relevance (mRMR) filter [15] and self organizing map (SOM) [16].
All the followed up classification approaches can work on reduced dimensions calculated in this step.

Multi-Binary-Classification Approach: Unlike in template attack where we estimate models and
search for optimal key k with maximum likelihood criterion, we consider to directly train and
run a classifier that accurately predicts the secret key given the input plaintext and leakage sig-
nal. Formally, assume that the plaintext p is fixed and uncorrelated with leakage signal x, we have
{(xi, ki) : xi ∈ X , ki ∈ {0, 1}D} as our training set, where xi and ki are respectively the input
(leakage trace) and output (secret key). Instead of tackling with a single-compound-label problem
whose output space is {0, 1}D and suffers generalization difficulties [17], we transform it into a
multi-binary-classification (MBC) problem where each classifier reads leakage traces and predicts
a certain binary bit in the secret key. Now the training set for predicting the j-th bit of key now
likes like D(j) = {(xi, k′i(j)) : xi ∈ X , k′i(j) ∈ {−1, 1}}. Here we use k′ to better fit conventional
notations in binary classification literature. Fig. 2 outlines the pipeline for the MBC approach.

Figure 2: The pipeline for machine learning based side channel attacks [18]. A dimension reduction
step will be first applied on the leakage trace vectors. After that, multiple binary classifiers are
trained to predict a single bit of the targeted secret key.

SVM, Random Forests and Deep Neural Networks: There are a variety of techniques to build
a classifier for the binary problem above, such as the standard SVM [19], the least squares SVM
(LS-SVM) [20] and the random forest [21]. The classifier in both the standard SVM and LS-SVM
takes the form as k′i

(j) = sign[wTφ(xi) + b] where φ(x) : Rm −→ Rmφ is the kernel func-
tion that (non-linearly) maps xi to some implicit higher dimensional spaces. The standard SVM
(Eq.11) aims to calculate a separating hyperplane so that distances between closest data points in
two classes (support vectors) and the hyperplane get maximized. The LS-SVM (Eq.12) is a variation
of SVM, which introduces a least squares loss function and working with equalities instead of solv-
ing quadratic programs with inequalities in SVM. Fig. 3 illustrates the decision boundary learned
by the LS-SVM after the PCA is applied. Refer [22] for a detailed relationship between SVM and
LS-SVM, and refer [2, 3, 23] for the application of SVM and LS-SVM in side channel attacks.

SVM: min
w,b,c

1

2
wTw +

γ

2

n∑
i=1

ci (11)

s.t. k′i
(j)[wTφ(xi) + b] ≥ 1− ci, i = 1, · · · , n
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LS-SVM: min
w,b,c

1

2
wTw +

γ

2

n∑
i=1

c2i (12)

s.t. k′i
(j)[wTφ(xi) + b] = 1− ci, i = 1, · · · , n

Figure 3: The decision boundary of LS-SVM with an RBF kernel in the embedded space generated
by PCA [3]. The horizontal and vertical axes are two principle components from training trace
vectors. The red and blue points represent two classes which have respectively 0 and 1 in the j-th
bit of secrect key.

Another popular classification technique, random forest (RF), is composed of many binary decision
trees and the final prediction is computed through a majority vote among the classification results
from all trees. In order to reduce the high variance in large decision trees, each decision tree in the
random forest is trained on a different subset of training dataset. Fig. 4 simply shows how a single
decision tree classifies secret key bits using the leakage signals. Refer to [6, 4] for the successful
application in the SCA context.

Figure 4: A binary decision tree in a random forest that classifies the secret key bit given leakage
signals [6]. The tree will forward the input to one of the possible branch starting from current node
until a leaf is reached. A majority voting is performed among decision trees to give a final prediction.

The last class of classifiers that we will mention in this review is deep neural networks [24], which
learn more abstract representations from the raw data with stacking many non-linear layers. Under
SCA context, deep neural networks differ from usual classifiers in the profiling phase: there is
no need to perform either preprocessing with dimension reduction techniques or bit-wise binary
classification, since these deep models allow better feature extraction [25]. However, it has been
shown that not all architectures of deep neural networks work equally well in SCA tasks [24].

Power Trace Alignment: Misalignment is another realistic concern in side channel attack through
leakage trace signals, which may result in incorrect leakage models and useless attacks. The reasons
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behind the trace misalignment can be the synchronization issues between the clone device and the
targeted device, or the clock variability and instability, or some intentional countermeasures such
as delays and modulations. One efficient technique for trace alignment is dynamic time warping
(DTW) that is essentially a dynamic programming algorithm. As illustrated in Fig 5, DTW mini-
mizes the distances between trace times ti and tj of x and y respectively, in a backtracking manner:

DTWti,tj = (xti − ytj )2 + min
(
DTWti,tj−1,DTWti−1,tj ,DTWti−1,tj−1

)
(13)

Figure 5: Time alignment of two leakage signals [26]. Dashed arrows indicate aligned points.

3 Conclusions

To conclude, both the template attack (TA) and the machine learning based attack (MLA) retrieve
meaningful information from vast amounts of leakage signals. These approaches share the same
two-stage paradigm: first estimate a leakage model in the profiling phase and then extract the secret
key in the attacking phase. While TA relies more on the probability distribution assumptions that
need parameters to figure out the underlying templates, MLA is amenable to (nonparametric) super-
vised learning framework that directly predicts binary bits with dimension reduced traces. Further
research works in this area may focus on how to develop attacking approaches against countermea-
sures and protections, or how to adapt TA and MLA to more complicated scenarios.
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