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Abstract

This paper examines how to implement two different attacks on the public-
key cryptosystem RSA and analyze their performance. It includes Fermat’s
factorization and Wiener’s attack. Both algorithms are implemented in Python
and tested with different parameters for RSA system.

1 Introduction

Rivest-Shamir-Adleman, also known as RSA [2], is a widely used public-key cryp-
tosystems. It uses several keys to encrypt and decrypt information. One can encrypt
a message to another using the public key pair (n, e). Then the plaintext can be re-
covered from ciphertext using the private key pair (n, d). The safety of RSA is based
on the difficulty of the factorization of the product of two large prime numbers [2].
Many attack methods such as Fermat factoring and Wiener’s attack can efficiently
find the secret key d.

2 RSA

The RSA is introduced by R.L.Rivest, A.Shamir and L.Adleman. The keys for RSA
algorithm are generated in the following way [2]. First choosing two distinct prime
numbers p and q and computing n = pq. Then computing φ(n) = (p−1)(q−1). After
choosing a integer e, such that 1 < e < φ(n) and e and φ(n) are relatively prime, we
can compute d = e−1(mod φ(n)).

Therefore, RSA generates public keys (n, d) and private keys (n, e) based on two
large prime numbers. Thus, one can encrypt a message m to another using the public
key pair (n, e). The ciphertext c can be computed such that c = me(mod n). Then
the plaintext m can be recovered from c by computing m = cd(mod n) using the
private key pair (n, d).
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3 Fermat’s Factorization Method

Since the private key d is generated by computing d = e−1(mod φ(n)), it can be
calculated if φ(n) is known. φ(n) is equal to the product of p and q, and Fermat’s
factorization method can factor n into p and q efficiently. The algorithm is given
below.

function FermatFactorization(n)
input: n
output: p, q such that p · q = n
1: if n is even:
1b: return [2,n/2]
2: a← d(

√
n)e

3: b← a · a− n
4: while b is not a square:
4a: a← a+ 1
4b: b← a · a− n
5: return [a−

√
b, a+

√
b]

Fermat’s factorization method is very useful if the gap between p and q is small. In
this case, Fermat’s factorization method can factor n quickly so that private key d
will be exposed. It is unsafe to use two weak primes which are very close to each
other.

4 Wiener’s attack

It has been proved that the d can be efficiently found using Wiener’s attack when the
private key d is small [3].

Theorem 1 (Wiener’s Theorem [1]) Let n = p ·q with q < p < 2q and d < 1
3
·n 1

4 .
Given (n, e) with e · d = 1(mod φ(n)), the attacker can efficiently recover d.

First of all, a continued fraction is an expression in the following form:

x = a0 +
1

a1 + 1
a2+

1
a3+···

.

Thus, a continued fraction can be abbreviated by its continued fraction expansion
such that x = [a0, a1, a2, a3, · · · ]. Moreover, since

ed = 1 (mod (p− 1)(q − 1))

ed = k · (p− 1)(q − 1) + 1

e

pq
=

k

d
· (1− δ), where δ =

p+ q − 1− 1
k

pq
e

n
=

k

d
· (1− δ)
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So that k
d

is slightly bigger than e
n
. Also because φ(n) = (p−1)(q−1) = n−p−q−1 =

n− p− n
p

+ 1, n satisfies the equation p2 + p(φ(n)− n− 1)− n = 0. By using above
theorems and properties, the algorithm description of Wiener’s attack is given below.

function WienerAttack(n, e)
input: n, e
output: φ(n)
1: Find all convergents k

d
of the continued fraction expansion of e

n
: k1

d1
, k2
d2
, k3
d3
, · · · , km

dm

2: i← 1
3: φ(n) = edi−1

ki

4: while i <= m and p2 + p(φ(n)− n− 1)− n = 0 doesn’t have two prime roots:
4a: i← i+ 1
4b: φ(n) = edi−1

ki

5: if i <= m
5b: return φ(n)

If we obtain p, q and φ(n) using the above Wiener’s attack algorithm, we can calculate
the private key d. Thus it is also unsafe when d is small.

5 Implementation and Experiment

I use Python to implement the two algorithms I describe above and run code on my
personal computer. I test two attack methods with different RSA keys which are
generated by 256-bit p and 256-bit q.

When testing Fermat’s factorization method, I want to verify the relation between
two variables, the timecost and the difference between p and q. So I randomly choose
256-bit p and q, and I test Fermat’s factorization method with different n generated
by p and q. I use 10000 random (p, q) pairs to test and the result is shown in Fig.
1(a). The blue dots represent the time cost when the attack succeeds while the red
dots represent the attack fails. It shows that the time cost of the successful attack
tends to increase when the difference between p and q increases. Also the method is
more likely to fail when the difference between p and q becomes bigger.

Similarly, when testing Wiener’s attack, I want to see the relationship between two
variables, the time cost and d. Thus I randomly choose 56662543281271331202671523
463166225885565989658741601714708328213655364539557 and q = 105445354820120
169821861898816583105533424269000689889653952038003525082796091. Given n =
p ·q, I test Wiener’s attack with 10000 d which is qualified and randomly generated as
well. The result is shown in Fig. 1(b). It demonstrates that the time cost and proba-
bility of failure both increase with d. Notice that when d > 13949775742836522512439
9307396186211407 the attack starts to fail, which accords with Wiener’s theorem be-
cause 139497757428365225124399307396186211407 > 1

3
· n 1

4 = 9.26743661559 · 1037.
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(a) Fermat’s factorization Method
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(b) Wiener’s attack
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(c) Comparison between Fermat’s factoriza-
tion Method and Wiener’s attack

Figure 1: Time cost of attacking RSA

As shown in Fig. 1(c), the green dots represent the time cost of Fermat’s factoriza-
tion while the yellow dots represent the time cost of Wiener’s attack when the two
methods can both successfully attack RSA. It shows that Fermat’s factorization is
quicker than Wiener’s attack when they are both useful. However, in certain cases
Wiener’s attack succeeds and Fermat’s factorization method fails, and vice versa.

6 Conclusions

I have implemented Fermat’s factorization method and Wiener’s attack for attacking
RSA and tested them with different parameters. The result accords with the fact
that Fermat’s factorization method is efficient when p and q are close and Wiener’s
attack is useful when d is relatively small.
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