
A New Algorithm for Inversion mod pk

Çetin Kaya Koç
koc@cs.ucsb.edu

Department of Computer Science
University of California Santa Barbara

May 11, 2017

Abstract

A new algorithm for computing x = a−1 (mod pk) is introduced. It is based
on the exact solution of linear equations using p-adic expansions. It starts with
the initial value c = a−1 (mod p) and iteratively computes the digits of the
inverse x = a−1 (mod pk) in base p. The mod 2 version of the algorithm is
significantly more efficient than the algorithm given by Dussé and Kaliski for
computing a−1 (mod 2k).

1 Introduction

Hardware and software realizations of public-key cryptographic algorithms require
implementations the multiplicative inverse mod p (prime) or n (composite). When the
modulus is prime, we can compute the multiplicative inverse using Fermat’s method
as a−1 = ap−2 (mod p). When it is composite, we can use Euler’s method to compute
the multiplicative inverse as a−1 = aφ(n)−1 (mod n), provided that we know φ(n).
On the other hand, the extended Euclidean algorithm works for both prime and
composite modulus

(u, v) ← EEA(a, n)

u · a− v · n = 1

a−1 = u (mod n)

The classical extended Euclidean algorithm requires division operations, which is
not preferred for fast implementations. On the other hand, the binary extended
Euclidean and Kaliski’s algorithms use shift, addition and subtraction operations
[?, ?, ?]. We must note however that all of these inversion algorithms are variants of
the classical Euclidean algorithm for computing the greatest common divisor of two
integers g = gcd(a, n).

1



2 Inversion mod 2k

The Montgomery multiplication algorithm is introduced by Peter Montgomery [?] in
1985. It computes the product c = a · b · r−1 (mod n) for an arbitrary modulus n,
without actually performing any mod n reductions. Interestingly, the algorithm does
not directly need r−1 (mod n), but it requires another quantity n′ which is related to
it. The steps of the classical Montgomery multiplication algorithm are given below.

function Montgomery(a, b)
input: a, b, n, r, n′

output: u = a · b · r−1 mod n
1: t← a · b
2: m← t · n′ (mod r)
3: u← (t+m · n)/r
4: if u ≥ n then u← u− n
5: return u

None of the steps of the Montgomery multiplication algorithm requires mod n calcu-
lations; instead they perform mod r reduction in Step 2 and division by r in Step 3.
By selecting r = 2k where k > log2(n), these calculations are trivially implemented in
software or hardware. The selection of r = 2k requires that n be odd, which is often
the case in cryptography.

The Montgomery multiplication algorithm makes use of a special quantity n′ which
is one of the numbers produced by the extended Euclidean algorithm with inputs 2k

and n:

(u, n′) ← EEA(2k, n)

u · 2k − n′ · n = 1

n′ = −n−1 (mod 2k)

In other words, the Montgomery multiplication algorithm requires the computation
of n−1 (mod 2k) rather than r−1 (mod n). We can expect that inversion with re-
spect to a special modulus such as 2k might be easier than inversion with respect to
an arbitrary modulus. Indeed this is the case. Dussé and Kaliski [?] gave an effi-
cient algorithm for computing the inverse x = a−1 (mod 2k) for an odd a, therefore,
gcd(a, 2k) = 1. Their algorithm is based on a specialized version of the extended
Euclidean algorithm for computing the inverse.

function DusseKaliski(a, 2k)
input: a, k
output: x = a−1 mod 2k

1: x← 1
2: for i = 2 to k
2a: if 2i−1 < a · x (mod 2i) then x← x+ 2i−1

3: return x

2



As an example, consider the computation of 23−1 (mod 26). Here, we have a = 23
and k = 6, and we start with x = 1. At the end of the algorithm we find x = 39,
implying 23−1 = 39 (mod 64); this is correct since 23 · 39 = 897 = 1 (mod 64).

i 2i−1 2i x a · x (mod 2i) x

2 2 4 1 (23 · 1 mod 4)→ 3 3 > 2 1 + 2 = 3

3 4 8 3 (23 · 3 mod 8)→ 5 5 > 4 3 + 4 = 7

4 8 16 7 (23 · 7 mod 16)→ 1 7 6> 8 7

5 16 32 7 (23 · 7 mod 32)→ 1 7 6> 14 7

6 32 64 7 (23 · 7 mod 64)→ 33 33 > 32 7 + 32 = 39

It is not clear how the Dussé-Kaliski algorithm can be generalized to inversion mod pk

for a prime p > 2. However, it is instructive to give a complexity analysis of it. The
algorithm runs k−1 steps where at each step a multiplication (mod 2i), a comparison
(subtraction), and an addition is performed with operands whose sizes are as much
as k bits.

3 A New Algorithm for Inversion mod pk

We introduce a new algorithm for computing x = a−1 (mod pk) for an arbitrary
prime p, requiring s bits in its representation. The size of the input operand a and
the inverse x will be sk bits. Our algorithm relies on Dixon’s algorithm [?] for exact
solution linear equations using p-adix expansions. Dixon’s algorithm aims to exactly
solve a linear system of equations with integer coefficients, such as A · x = b in the
sense that the solutions are obtained as rational numbers rather than approximate
values using floating-point arithmetic.

Similar to Dixon’s approach, we formulate the inversion problem as the exact
solution of the linear equation

a · x = 1 (mod pk)

for a prime p, integer k > 1 and gcd(a, p) = 1 or 1 < a < p. By solving this
equation, we compute the inverse x = a−1 (mod pk). The algorithm starts with the
computation of

c = a−1 (mod p)

using the extended Euclidean algorithm. It is more often the case that the prime p
is small, thus, this computation will not constitute a bottleneck. In fact, the case
of p = 2 is trivial, since c = 1 for any odd a. The algorithm then iteratively finds
the digits of x expressed in base p such that x = a−1 (mod pk). In other words, the
algorithm computes the vector (xk−1 · · · x1x0)p with xi ∈ [0, p− 1] such that

x =
k−1∑
i=0

xip
i = x0 + x1 · p+ x2 · p2 + · · ·+ xk−1 · pk−1

3



function ModInverse(a, pk)
input: a, p, k
output: x = a−1 mod pk

1: c← a−1 (mod p)
2: b0 ← 1
3: for i = 0 to k − 1
3a: xi ← c · bi (mod p)
3b: bi+1 ← (bi − a · xi)/p
4: return x = (xk−1 · · ·x1x0)p

4 Correctness of ModInverse

First of all, the term (bi − a · xi) in Step 3b is divisible by p for every i since

bi − a · xi = bi − a · c · bi = bi − bi = 0 (mod p)

due to the fact that a · c = 1 (mod p). Therefore, bi is integer for every i ∈ [0, k− 1].
It also follows that when i = 0, the term (b0 − a · x0) = (1 − a · c) is divisible by p.
Furthermore, the terms bi and xi are found as

bi = (1− a · c)i/pi

bi · pi = (1− a · c)i

xi = c · bi (mod p)

for i = 0, 1, . . . , k − 1. The identity for bi can be proven by induction on i.

The Basis Step: For i = 0, we have

b0 = 1

x0 = c · b0 = c (mod p)

These follow from Step 2 and Step 3a of the algorithm for i = 0.

The Inductive Step: Assume the formulas for bi and xi are correct for i. Due to
Step 3b, we can write bi+1 · p = bi − a · xi, and thus

bi+1 · p = bi − a · xi
= (1− a · c)i/pi − a · c · (1− a · c)i/pi

= (1− a · c)i · (1− a · c)/pi

= (1− a · c)i+1/pi

bi+1 · pi+1 = (1− a · c)i+1

Once bi+1 is available, we can write from Step 3a as xi+1 = c · bi+1 (mod p).

4



To prove that the algorithm indeed computes x = a−1 (mod pk), we note that a · x
can be written as

a ·
k−1∑
i=0

xi · pi = a ·
k−1∑
i=0

c · bi · pi

= a ·
k−1∑
i=0

c · (1− a · c)i

= a · c · (1− a · c)k − 1

1− a · c− 1

= 1− (1− a · c)k

Thus, we find a · x = 1− (1− a · c)k. We have already determined that (1− a · c) is
a multiple of p, thus, we conclude that (1− a · c)k is a multiple of pk. Therefore, we
have a · x = 1 (mod pk).

5 Example Computation and Complexity

Consider the computation of 12−1 (mod 54). We have a = 12, p = 5, and k = 4.
First we compute c = a−1 (mod p), which is found as c = 12−1 = 2−1 = 3 (mod 5).
Starting with the initial value b0 = 1, the algorithm proceeds for i = 0, 1, 2, 3 as
follows. The algorithm computes x expressed in base 5 as x = (x3x2x1x0)5 = (4243)5.
In decimal, this is equal to 4 ·53 +2 ·52 +4 ·5+3 = 573. Indeed 12−1 = 573 (mod 54).

i bi xi = c · bi mod p bi+1 = (bi − a · xi)/p
0 1 (3 · 1 mod 5)→ 3 (1− 12 · 3)/5→ −7

1 −7 (3 · (−7) mod 5)→ 4 (−7− 12 · 4)/5→ −11

2 −11 (3 · (−11) mod 5)→ 2 (−11− 12 · 2)/5→ −7

3 −7 (3 · (−7) mod 5)→ 4 . . .

In the analysis of the algorithm, a more likely scenario is that the prime number p fits
into the word size of the computer. Assume, s = log2(p) which is also the word size
of the processor. We can count the addition, subtraction, and multiplications mod p
(size s-bit) single-precision arithmetic operations.

In Step 1, the EEA algorithm can be used to compute c = a−1 (mod p) which
requires O(log s) arithmetic operations. Note that the input parameter a and the
output x may occupy up to ks-bit of space however, the inverse c is only s bits.

In Step 3a we perform one s-bit modular multiplication requiring one arithmetic
operation. In Step 3b we multiply an s-bit number xi with the ks-bit number a,
subtract the result from ks-bit number bi, and divide by p in order to compute bi+1.
Therefore, the computations in Step 3b require O(k) arithmetic operations. We
conclude that the inversion algorithm requires O(k2 + log s) arithmetic operations in
order to compute x = a−1 (mod pk), where a and x are ks-bit numbers.

5



6 Inversion mod 2k

The proposed algorithm significantly simplifies when p = 2, and it constitutes a more
efficient alternative to the Dussé-Kaliski algorithm. First of all, for x = a−1 (mod 2k)
to exist, gcd(a, 2k) must be 1, which implies that a is odd. Given an odd a, the value
of c = a−1 (mod 2) is trivially found: c = 1. The modified algorithm is given below.

function ModInverse(a, 2k)
input: a, k
output: x = a−1 mod 2k

1: b0 ← 1
2: for i = 0 to k − 1
2a: xi ← bi (mod 2)
2b: bi+1 ← (bi − a · xi)/2
3: return x = (xk−1 · · ·x1x0)2

The mod 2 operation in Step 2a is computed by checking the LSB. Obviously we have
xi ∈ {0, 1}, and the inverse x is produced in base 2, that is x = (xk−1 · · ·x1x0)2. On
the other hand, the division by 2 in Step 2b is performed by right shift. Below, we
illustrate the computation of a = 23 and k = 6, in order to compare to the Dussé-
Kaliski algorithm. The algorithm produces the binary result x = (100111)2 = 39;
this is indeed correct, since 23−1 = 39 (mod 26).

i bi xi = bi (mod 2) bi+1 = (bi − a · xi)/2
0 1 1 (mod 2)→ 1 (1− 23 · 1)/2→ −11

1 −11 −11 (mod 2)→ 1 (−11− 23 · 1)/2→ −17

2 −17 −17 (mod 2)→ 1 (−17− 23 · 1)/2→ −20

3 −20 −20 (mod 2)→ 0 (−20− 23 · 0)/2→ −10

4 −10 −10 (mod 2)→ 0 (−10− 23 · 0)/2→ −5

5 −5 −5 (mod 2)→ 1 (−5− 23 · 1)/2→ −14

Realistic analysis of the algorithm would require that we count of number of bit
operations. In Step 2a we perform a “check the LSB” operation. The division by 2 in
Step 2b is usually implemented by a “right shift of the operand”. We will not involve
these computations in the complexity calculations since they are of O(1). Depending
on whether xi = 1 (or xi = 0), in Step 2b we subtract (or not subtract) a from bi, each
of which is k bits. If we assume uniform probability that half of the xi bits would be
nonzero, our algorithm requires only k/2 k-bit subtraction operations in the average
in order to compute x = a−1 (mod 2k), where a and x are k-bit numbers.

7 Conclusions

We have introduced a new algorithm for computing the inverse a−1 (mod pk) given
a prime p and a ∈ [1, p − 1]. The algorithm is based on the exact solution of linear

6



equations using p-adic expansions, due to Dixon [?]. The new algorithm starts with
the initial value c = a−1 (mod p) and iteratively computes the inverse x = a−1

(mod pk).
The mod 2 version of the algorithm (that is, when p = 2) is significantly more

efficient than the algorithm given by Dussé and Kaliski in [?] for computing a−1

(mod 2k) for an odd integer a.
The new algorithm requires k/2 subtractions in the average with (up to) k-bit

operands. The Dussé-Kaliski algorithm requires k− 1 multiplications, k− 1 compar-
isons (subtractions), and k/2 additions in the average with (up to) k-bit operands.

7


