
Data Structures and Algorithms cs130a

Universal Hash Functions

and Perfect Hashing
278 Chapter 11 Hash Tables

0

1

2

3

4

5

6

7

8

1 0 0 10

9 10 18 60 75
0 1 2 3

1 0 0 70

0

0

16 23 88 40 37
0 1 2 3 4 5 6 7 8

52

m2
S2a2 b2

m0
S0a0 b0

m5
S5a5 b5

m7
S7a7 b7

T

4 5 6 7 8

72

9 10 11 12 13 14 15

22

Figure 11.6 Using perfect hashing to store the set K D f10; 22; 37; 40; 52; 60; 70; 72; 75g. The
outer hash function is h.k/ D ..ak C b/ mod p/ mod m, where a D 3, b D 42, p D 101, and
m D 9. For example, h.75/ D 2, and so key 75 hashes to slot 2 of table T . A secondary hash
table Sj stores all keys hashing to slot j . The size of hash table Sj is mj D n2

j , and the associated
hash function is hj .k/ D ..aj kC bj / mod p/ mod mj . Since h2.75/ D 7, key 75 is stored in slot 7
of secondary hash table S2. No collisions occur in any of the secondary hash tables, and so searching
takes constant time in the worst case.

call a hashing technique perfect hashing if O.1/ memory accesses are required to
perform a search in the worst case.

To create a perfect hashing scheme, we use two levels of hashing, with universal
hashing at each level. Figure 11.6 illustrates the approach.

The first level is essentially the same as for hashing with chaining: we hash
the n keys into m slots using a hash function h carefully selected from a family of
universal hash functions.

Instead of making a linked list of the keys hashing to slot j , however, we use a
small secondary hash table Sj with an associated hash function hj . By choosing
the hash functions hj carefully, we can guarantee that there are no collisions at the
secondary level.

In order to guarantee that there are no collisions at the secondary level, however,
we will need to let the size mj of hash table Sj be the square of the number nj of
keys hashing to slot j . Although you might think that the quadratic dependence
of mj on nj may seem likely to cause the overall storage requirement to be exces-
sive, we shall show that by choosing the first-level hash function well, we can limit
the expected total amount of space used to O.n/.

We use hash functions chosen from the universal classes of hash functions of
Section 11.3.3. The first-level hash function comes from the class Hpm, where as
in Section 11.3.3, p is a prime number greater than any key value. Those keys

http://koclab.org Çetin Kaya Koç Winter 2020 1 / 34

http://koclab.org

Data Structures and Algorithms cs130a

Universal Hashing

If a malicious adversary chooses the keys to be hashed by some fixed
hash function, he can choose n keys xi such that they all hash to the
same value

H(xi) = h for i = 1, 2, . . . , n

This implies that the hash table will have Θ(n) retrieval time

Any fixed hash function would have this worst-case behavior

The only effective way to improve the situation is to choose the hash
function randomly in a way that is independent of the keys

This approach is called universal hashing

It can yield provably good performance in the average, not matter
which keys the adversary chooses

http://koclab.org Çetin Kaya Koç Winter 2020 2 / 34

http://koclab.org

Data Structures and Algorithms cs130a

Universal Hashing

In universal hashing, we select the hash function at random from a
carefully designed class of hash functions

Randomization guarantees that no single input will evoke worst-case
behavior

This selection is done at the beginning of each execution

Therefore, the algorithm can behave differently on each execution,
even for the same input

This will guarantee good average-case performance

Of course, poor performance will occur when the selected hash
function hashes the keys poorly

However, the probability of this situation is small, and is the same for
any set of keys of the same size

http://koclab.org Çetin Kaya Koç Winter 2020 3 / 34

http://koclab.org

Data Structures and Algorithms cs130a

Universal Hash Functions

Let H be a finite collection of hash functions that map a given
universe U of keys into the range {0, 1, 2, . . . ,m − 1}
The set H is said to be universal if for each pair of keys x , y ∈ U, the
number of hash functions h ∈ H for which h(x) = h(y) is at most
|H|/m
In other words, with a hash function randomly chosen from H, the
chance of collision between x and y is 1/m

This is the same chance of collision if h(x) and h(y) were randomly
and independently chosen from the set {0, 1, 2, . . . ,m − 1}

http://koclab.org Çetin Kaya Koç Winter 2020 4 / 34

http://koclab.org

Data Structures and Algorithms cs130a

Average Case Behavior

Suppose a hash function h is randomly chosen from a universal
collection of hash functions

It is used to hash n keys into a table T of size m, with chaining as
the collision resolution method

Let α be the load factor, defined as α = n/m

If x is not in the table, the expected length of the list that the key x
hashes into is at most α

If x is in the table, the expected length of the list that contains the
key x is at most 1 + α

http://koclab.org Çetin Kaya Koç Winter 2020 5 / 34

http://koclab.org

Data Structures and Algorithms cs130a

Average Case Behavior

Consider a pair of keys x and y ; due to the definition of the universal
hashing, the probability that they collide is

P[h(x) = h(y)] ≤ 1

m

Let the random variable Rxy take the value of 1 when h(x) = h(y)
and 0 otherwise; the expected value of Rxy is

E [Rxy] =
1

m

Let the random variable Sx be the number of keys other than x that
hash to the same slot as x , given as

Sx =
∑
y∈T
y 6=x

Rxy

http://koclab.org Çetin Kaya Koç Winter 2020 6 / 34

http://koclab.org

Data Structures and Algorithms cs130a

Average Case Behavior

Therefore, we have

E [Sx] = E [
∑
y∈T
y 6=x

Rxy] =
∑
y∈T
y 6=x

E [Rxy] ≤
∑
y∈T
y 6=x

1

m

If x 6∈ T , then the list length is equal to Sx and

|{y : y ∈ T and y 6= x}| = n

and thus the expected list length E [Sx] ≤ n/m = α

If x ∈ T , then because x appears in the list T [h(x)] and the count
does not include x , we have the list length as Sx + 1 and

|{y : y ∈ T and y 6= x}| = n − 1

and thus the expected list length

E [Sx] + 1 ≤ (n − 1)/m + 1 = 1 + α− 1/m < 1 + α

http://koclab.org Çetin Kaya Koç Winter 2020 7 / 34

http://koclab.org

Data Structures and Algorithms cs130a

Average Case Behavior

Theorem

Using universal hashing and collision resolution by chaining in an initially
empty table with m slots, it takes Θ(n) time to handle any sequence of n
Insert, Find, and Delete operations containing O(m) Insert operations.

The number of Insert operations is O(m), thus we have n = O(m)
which implies α = O(1)

The Insert and Delete operations take constant time, and the
expected time for Find operation is O(1) since the expected length of
the list is at most α

Therefore, the expected time for the entire sequence of n operations
is O(n) since each operation takes Ω(1), the bound Θ(n) is obtained

http://koclab.org Çetin Kaya Koç Winter 2020 8 / 34

http://koclab.org

Data Structures and Algorithms cs130a

Designing Universal Hash Functions

We will give 3 constructions and show them that they are universal

The first construction is based on linear congruential arithmetic with
two distinct moduli: p and m, where p is a prime

The second construction uses a random 0-1 matrix and mod 2
arithmetic

The third method is based the dot-product modulo m

http://koclab.org Çetin Kaya Koç Winter 2020 9 / 34

http://koclab.org

Data Structures and Algorithms cs130a

Construction of Hp,m

Select a prime p that is large enough so that every possible key is in
the range 0 to p − 1

Let Zp = {0, 1, 2, . . . , p − 1} and Z∗p = {1, 2, . . . , p − 1}
The size of the universe of the keys is p which is larger than the hash
table size m, i.e., p > m

Consider the integer a ∈ Z∗p and b ∈ Zp

Define the hash function family as

ha,b(x) = (a · x + b mod p) mod m

The class of hash functions is defined as

Hp,m = {ha,b | a ∈ Z∗p and b ∈ Zp}

http://koclab.org Çetin Kaya Koç Winter 2020 10 / 34

http://koclab.org

Data Structures and Algorithms cs130a

Properties of Hp,m

An Example: p = 17 and m = 6, we have h3,4(8) = 5 since

h3,4(8) = ((3 · 8 + 4) mod 17) mod 6

= (28 mod 17) mod 6

= 11 mod 6

= 5

Each hash function ha,b maps Zp to Zm: the keys are in the range 0
to p − 1, while the hash values are from 0 to m − 1

This family has the nice property that the table size m is arbitrary,
not necessarily a prime

There are p − 1 choices of a and p choices of b, and thus, there are
p(p − 1) hash functions

http://koclab.org Çetin Kaya Koç Winter 2020 11 / 34

http://koclab.org

Data Structures and Algorithms cs130a

Proving Universality of Hp,m

Theorem

The class Hp,m of hash functions is universal.

Consider two distinct keys x and y from Zp, so that x 6= y

For a given hash function ha,b, first compute

r = (a · x + b) mod p

s = (a · y + b) mod p

r − s = a(x − y) is nonzero since x 6= y and a 6= 0, and p is prime

Therefore, if x 6= y , we will always have r 6= s

There will not be collision on the “mod p level”

http://koclab.org Çetin Kaya Koç Winter 2020 12 / 34

http://koclab.org

Data Structures and Algorithms cs130a

Proving Universality of Hp,m

Moreover, each possible p(p − 1) pair of (a, b) with a 6= 0 yields a
different pair (r , s) since

a = (r − s)(x − y)−1 mod p

b = (r − ax) mod p

There are p(p − 1) possible pairs (r , s) with r 6= s, and thus, there is
a one-to-one correspondence between pairs (a, b) with a 6= 0 and
pairs (r , s) with r 6= s

http://koclab.org Çetin Kaya Koç Winter 2020 13 / 34

http://koclab.org

Data Structures and Algorithms cs130a

Proving Universality of Hp,m

Thus, for any given pairs of inputs x and y , if we pick (a, b) uniformly
at random from Z∗p ×Zp, the resulting pair is equally likely to be any
pair of distinct values modulo p

The probability that distinct keys x and y collide is equal to the
probability r = s (mod m) when r and s are randomly chosen as
distinct values modulo p

Furthermore, the probability that s collides with r when reduced
modulo m is at most 1/m, and therefore

P[ha,b(x) = ha,b(y)] ≤ 1/m

so that Hp,m is universal

http://koclab.org Çetin Kaya Koç Winter 2020 14 / 34

http://koclab.org

Data Structures and Algorithms cs130a

Construction of the Matrix Method

Assume that the keys are u bits long: x = (xu−1 · · · x1x0)

The hash table size as a power of two, as m = 2b, and the hash
values z = h(x) are b-bit integers: z = (zb−1 · · · z1z0)

The hash function h is computed using a 0-1 random matrix of
dimension b × u, denoted as A

The hash operation h(x) takes the key x expressed as a u-bit binary
number and multiplies with the matrix A to obtain the b-bit hash

All computations are done in mod 2: the Galois field GF(2)

http://koclab.org Çetin Kaya Koç Winter 2020 15 / 34

http://koclab.org

Data Structures and Algorithms cs130a

Properties of the Matrix Method

An Example: Let u = 4 and b = 3, therefore, the keys are 4-bit long
x = (x3x2x1x0) and the hash values are 3-bit long z = (z2z1z0)

The random 0-1 matrix is of size b × u = 3× 4

Taking A as below, the computation of z = h(x) is performed using

z0z1
z2

 =

1 0 0 0
0 1 1 1
1 1 1 0

x0
x1
x2
x3

Let x = (x3x2x1x0) = (0101), we obtain (z2z1z0) = (011) as

z0z1
z2

 =

1 0 0 0
0 1 1 1
1 1 1 0

1
0
1
0

 =

1 + 0 + 0 + 0
0 + 0 + 1 + 0
1 + 0 + 1 + 0

 =

1
1
0

http://koclab.org Çetin Kaya Koç Winter 2020 16 / 34

http://koclab.org

Data Structures and Algorithms cs130a

Proving Universality

Theorem

For x 6= y , P[h(x) = h(y)] = 1/m = 2−b, therefore the class of matrix
hash functions with a randomly selected 0-1 matrices is universal.

Take an arbitrary x and y

They must differ in at least one bit position

Assume that x and y differ in the ith bit, i.e., they are given as
(xu−1 · · · xi · · · x1x0) and (yu−1 · · · yi · · · y1y0) such that xi 6= yi

WLOG, assume xi = 0 and yi = 1

Now choose the entire A matrix except its ith column

http://koclab.org Çetin Kaya Koç Winter 2020 17 / 34

http://koclab.org

Data Structures and Algorithms cs130a

Proving Universality

Since this is the column that multiplies the ith bit x or y , the hash
values h(x) and h(y) are the same, except the contribution of the ith
column of A is not included yet

The length of ith column is b, and there are 2b different choices for
this column

Every time we change a bit in this column, we flip the corresponding
bit in h(y) since yi = 1

There are exactly one in 2b chance that h(x) = h(y)

Therefore, the hash function is universal

http://koclab.org Çetin Kaya Koç Winter 2020 18 / 34

http://koclab.org

Data Structures and Algorithms cs130a

Proving Universality

Consider x = (x3x2x1x0) = (0101) and y = (y3y2y1y0) = (1101) so
that x and y differ only in the 3rd bit x3 6= y3z0z1

z2

 =

1 0 0 0
0 1 1 1
1 1 1 0

1
0
1
0

 and

z ′0z ′1
z ′2

 =

1 0 0 0
0 1 1 1
1 1 1 0

1
0
1
1

z0z1
z2

 =

(1 · 1 + 0 · 0 + 0 · 1) + 0 · 0
(0 · 1 + 1 · 0 + 1 · 1) + 1 · 0
(1 · 1 + 1 · 0 + 0 · 1) + 0 · 0

z ′0z ′1
z ′2

 =

(1 · 1 + 0 · 0 + 0 · 1) + 0 · 1
(0 · 1 + 1 · 0 + 1 · 1) + 1 · 1
(1 · 1 + 1 · 0 + 0 · 1) + 0 · 1

http://koclab.org Çetin Kaya Koç Winter 2020 19 / 34

http://koclab.org

Data Structures and Algorithms cs130a

Proving Universality

The contribution of the first three columns of the A matrix to the
hash value is the same, and the difference occurs in the contribution
of the last columnz0z1

z2

 =

(1) + 0 · 0
(1) + 1 · 0
(1) + 0 · 0

 and

z ′0z ′1
z ′2

 =

(1) + 0 · 1
(1) + 1 · 1
(1) + 0 · 1

As we use A matrices each of which is different in the last column
(there are 8 such columns), we obtain different [z ′0, z

′
1, z
′
2]T vectorsz0z1

z2

 =

1
1
1

 and

z ′0z ′1
z ′2

 =

(1) + 0 · 1
(1) + 1 · 1
(1) + 0 · 1

http://koclab.org Çetin Kaya Koç Winter 2020 20 / 34

http://koclab.org

Data Structures and Algorithms cs130a

Proving Universality

Only in 0 case in which the last column is [0, 0, 0]T , we will obtain
[z ′0, z

′
1, z
′
2]T = [z0, z1, z2]T , which is the case when the last column of

A is selected as [0, 0, 0]T

(1) + 0 · 1
(1) + 0 · 1
(1) + 0 · 1

 =

1
1
1

 ;

(1) + 0 · 1
(1) + 0 · 1
(1) + 1 · 1

 =

1
1
0

 ;

(1) + 0 · 1
(1) + 1 · 1
(1) + 0 · 1

 =

1
0
1

 ;

(1) + 0 · 1
(1) + 1 · 1
(1) + 1 · 1

 =

1
0
0

(1) + 1 · 1
(1) + 0 · 1
(1) + 0 · 1

 =

0
1
1

 ;

(1) + 1 · 1
(1) + 0 · 1
(1) + 1 · 1

 =

0
1
0

 ;

(1) + 1 · 1
(1) + 1 · 1
(1) + 0 · 1

 =

0
0
1

 ;

(1) + 1 · 1
(1) + 1 · 1
(1) + 1 · 1

 =

0
0
0

Therefore h(x) = h(y) only in 1 out of 8 cases

There are exactly one in 2b chance that h(x) = h(y)

http://koclab.org Çetin Kaya Koç Winter 2020 21 / 34

http://koclab.org

Data Structures and Algorithms cs130a

Construction of the Dot-Product Mod m Method

Let m be prime

Decompose the key x into r + 1 digits each with the value in the set
Zm = {0, 1, 2, . . . ,m − 1}
We have x = (xrxr−1 · · · x1x0) with xi ∈ Zm

Let a = (arar−1 · · · a1a0) be a random vector such that ai ∈ Zm

Define the hash function family as

ha(x) =
r∑

i=0

aixi (mod m)

The size of H is mr+1

http://koclab.org Çetin Kaya Koç Winter 2020 22 / 34

http://koclab.org

Data Structures and Algorithms cs130a

Proving Universality

Theorem

The set H = {ha} is universal.

Let x = (xr · · · x1x0) and y = (yr · · · y1y0) be two distinct keys

Thus, they differ in at least one digit position, WLOG position 0

For how many ha ∈ H do x and y collide?

The equality h(x) = h(y) implies

r∑
i=0

aixi =
r∑

i=0

aiyi (mod m)

http://koclab.org Çetin Kaya Koç Winter 2020 23 / 34

http://koclab.org

Data Structures and Algorithms cs130a

Proving Universality

Equivalently we have

r∑
i=0

ai (xi − yi) = 0 (mod m)

a0(x0 − y0) +
r∑

i=1

ai (xi − yi) = 0 (mod m)

a0(x0 − y0) = −
r∑

i=1

ai (xi − yi) (mod m)

http://koclab.org Çetin Kaya Koç Winter 2020 24 / 34

http://koclab.org

Data Structures and Algorithms cs130a

Proving Universality

Since x0 6= y0 and m is prime, the inverse (x0 − y0)−1 (mod m)
exists, which implies

a0 = −(x0 − y0)−1

[
r∑

i=1

ai (xi − yi)

]
(mod m)

Thus, for any choices of a1, a2, . . . , ar , exactly one choice of a0 causes
x and y collide

How many ha functions cause x and y collide?

http://koclab.org Çetin Kaya Koç Winter 2020 25 / 34

http://koclab.org

Data Structures and Algorithms cs130a

Proving Universality

There are m choices for each of a1, a2, . . . , ar but once they are
chosen, there is only once choice of a0 that causes x and y collide

Therefore, the number of hash functions that causes x and y collide is

mr · 1 = mr =
mr+1

m
=
|H|
m

that makes H a universal hash function family

http://koclab.org Çetin Kaya Koç Winter 2020 26 / 34

http://koclab.org

Data Structures and Algorithms cs130a

Perfect Hashing

A hashing technique is called perfect hashing if O(1) memory
accesses are required to perform a search in the worst case

To create a perfect hashing, we use two levels of hashing, with
universal hashing at each level

278 Chapter 11 Hash Tables

0

1

2

3

4

5

6

7

8

1 0 0 10

9 10 18 60 75
0 1 2 3

1 0 0 70

0

0

16 23 88 40 37
0 1 2 3 4 5 6 7 8

52

m2
S2a2 b2

m0
S0a0 b0

m5
S5a5 b5

m7
S7a7 b7

T

4 5 6 7 8

72

9 10 11 12 13 14 15

22

Figure 11.6 Using perfect hashing to store the set K D f10; 22; 37; 40; 52; 60; 70; 72; 75g. The
outer hash function is h.k/ D ..ak C b/ mod p/ mod m, where a D 3, b D 42, p D 101, and
m D 9. For example, h.75/ D 2, and so key 75 hashes to slot 2 of table T . A secondary hash
table Sj stores all keys hashing to slot j . The size of hash table Sj is mj D n2

j , and the associated
hash function is hj .k/ D ..aj kC bj / mod p/ mod mj . Since h2.75/ D 7, key 75 is stored in slot 7
of secondary hash table S2. No collisions occur in any of the secondary hash tables, and so searching
takes constant time in the worst case.

call a hashing technique perfect hashing if O.1/ memory accesses are required to
perform a search in the worst case.

To create a perfect hashing scheme, we use two levels of hashing, with universal
hashing at each level. Figure 11.6 illustrates the approach.

The first level is essentially the same as for hashing with chaining: we hash
the n keys into m slots using a hash function h carefully selected from a family of
universal hash functions.

Instead of making a linked list of the keys hashing to slot j , however, we use a
small secondary hash table Sj with an associated hash function hj . By choosing
the hash functions hj carefully, we can guarantee that there are no collisions at the
secondary level.

In order to guarantee that there are no collisions at the secondary level, however,
we will need to let the size mj of hash table Sj be the square of the number nj of
keys hashing to slot j . Although you might think that the quadratic dependence
of mj on nj may seem likely to cause the overall storage requirement to be exces-
sive, we shall show that by choosing the first-level hash function well, we can limit
the expected total amount of space used to O.n/.

We use hash functions chosen from the universal classes of hash functions of
Section 11.3.3. The first-level hash function comes from the class Hpm, where as
in Section 11.3.3, p is a prime number greater than any key value. Those keys

http://koclab.org Çetin Kaya Koç Winter 2020 27 / 34

http://koclab.org

Data Structures and Algorithms cs130a

Perfect Hashing

The first level is the same as hashing with chaining: we hash n keys
into m slots using a hash function h from a family of universal hash
functions

However, instead of making a linked list of keys hashing to slot j , we
use a secondary hash table Sj with an associate hash function hj

By choosing the hash functions hj carefully, we can guarantee that
there are no collisions at the secondary level

In order to guarantee that there are no collisions on the secondary
level, we need to let the size mj of the hash table Sj be the square of
the number nj of keys hashing to slop j

http://koclab.org Çetin Kaya Koç Winter 2020 28 / 34

http://koclab.org

Data Structures and Algorithms cs130a

Perfect Hashing

Consider the key set K = {10, 22, 37, 40, 52, 60, 70, 72, 74}
The first level hash function is

h(k) = (ak + b mod p) mod m

with parameters (m, a, b, p) = (9, 3, 42, 101), where m is the table size

For example, h(75) is computed as

h(75) = (3 · 75 + 42 mod 101) mod 9

= (267 mod 101) mod 9

= 65 mod 9

= 2

http://koclab.org Çetin Kaya Koç Winter 2020 29 / 34

http://koclab.org

Data Structures and Algorithms cs130a

Perfect Hashing

A secondary hash table Sj stores all keys hashing to slot j

The size of hash table Sj is mj = n2j , where nj is the number of keys
hashing to slot j

The associated hash function of Sj is

hj(k) = (ajk + bj mod p) mod mj
278 Chapter 11 Hash Tables

0

1

2

3

4

5

6

7

8

1 0 0 10

9 10 18 60 75
0 1 2 3

1 0 0 70

0

0

16 23 88 40 37
0 1 2 3 4 5 6 7 8

52

m2
S2a2 b2

m0
S0a0 b0

m5
S5a5 b5

m7
S7a7 b7

T

4 5 6 7 8

72

9 10 11 12 13 14 15

22

Figure 11.6 Using perfect hashing to store the set K D f10; 22; 37; 40; 52; 60; 70; 72; 75g. The
outer hash function is h.k/ D ..ak C b/ mod p/ mod m, where a D 3, b D 42, p D 101, and
m D 9. For example, h.75/ D 2, and so key 75 hashes to slot 2 of table T . A secondary hash
table Sj stores all keys hashing to slot j . The size of hash table Sj is mj D n2

j , and the associated
hash function is hj .k/ D ..aj kC bj / mod p/ mod mj . Since h2.75/ D 7, key 75 is stored in slot 7
of secondary hash table S2. No collisions occur in any of the secondary hash tables, and so searching
takes constant time in the worst case.

call a hashing technique perfect hashing if O.1/ memory accesses are required to
perform a search in the worst case.

To create a perfect hashing scheme, we use two levels of hashing, with universal
hashing at each level. Figure 11.6 illustrates the approach.

The first level is essentially the same as for hashing with chaining: we hash
the n keys into m slots using a hash function h carefully selected from a family of
universal hash functions.

Instead of making a linked list of the keys hashing to slot j , however, we use a
small secondary hash table Sj with an associated hash function hj . By choosing
the hash functions hj carefully, we can guarantee that there are no collisions at the
secondary level.

In order to guarantee that there are no collisions at the secondary level, however,
we will need to let the size mj of hash table Sj be the square of the number nj of
keys hashing to slot j . Although you might think that the quadratic dependence
of mj on nj may seem likely to cause the overall storage requirement to be exces-
sive, we shall show that by choosing the first-level hash function well, we can limit
the expected total amount of space used to O.n/.

We use hash functions chosen from the universal classes of hash functions of
Section 11.3.3. The first-level hash function comes from the class Hpm, where as
in Section 11.3.3, p is a prime number greater than any key value. Those keys

http://koclab.org Çetin Kaya Koç Winter 2020 30 / 34

http://koclab.org

Data Structures and Algorithms cs130a

Perfect Hashing

On the second level, we use the hash function belonging to Slot 2,
which has the parameters (m2, a2, b2) = (9, 10, 18) and the same
prime p = 101, therefore, we compute h2(75) as

h2(75) = (10 · 75 + 18 mod 101) mod 9

= 7

and place the key 75 in the 7th cell of the Slot 2 table

278 Chapter 11 Hash Tables

0

1

2

3

4

5

6

7

8

1 0 0 10

9 10 18 60 75
0 1 2 3

1 0 0 70

0

0

16 23 88 40 37
0 1 2 3 4 5 6 7 8

52

m2
S2a2 b2

m0
S0a0 b0

m5
S5a5 b5

m7
S7a7 b7

T

4 5 6 7 8

72

9 10 11 12 13 14 15

22

Figure 11.6 Using perfect hashing to store the set K D f10; 22; 37; 40; 52; 60; 70; 72; 75g. The
outer hash function is h.k/ D ..ak C b/ mod p/ mod m, where a D 3, b D 42, p D 101, and
m D 9. For example, h.75/ D 2, and so key 75 hashes to slot 2 of table T . A secondary hash
table Sj stores all keys hashing to slot j . The size of hash table Sj is mj D n2

j , and the associated
hash function is hj .k/ D ..aj kC bj / mod p/ mod mj . Since h2.75/ D 7, key 75 is stored in slot 7
of secondary hash table S2. No collisions occur in any of the secondary hash tables, and so searching
takes constant time in the worst case.

call a hashing technique perfect hashing if O.1/ memory accesses are required to
perform a search in the worst case.

To create a perfect hashing scheme, we use two levels of hashing, with universal
hashing at each level. Figure 11.6 illustrates the approach.

The first level is essentially the same as for hashing with chaining: we hash
the n keys into m slots using a hash function h carefully selected from a family of
universal hash functions.

Instead of making a linked list of the keys hashing to slot j , however, we use a
small secondary hash table Sj with an associated hash function hj . By choosing
the hash functions hj carefully, we can guarantee that there are no collisions at the
secondary level.

In order to guarantee that there are no collisions at the secondary level, however,
we will need to let the size mj of hash table Sj be the square of the number nj of
keys hashing to slot j . Although you might think that the quadratic dependence
of mj on nj may seem likely to cause the overall storage requirement to be exces-
sive, we shall show that by choosing the first-level hash function well, we can limit
the expected total amount of space used to O.n/.

We use hash functions chosen from the universal classes of hash functions of
Section 11.3.3. The first-level hash function comes from the class Hpm, where as
in Section 11.3.3, p is a prime number greater than any key value. Those keys

http://koclab.org Çetin Kaya Koç Winter 2020 31 / 34

http://koclab.org

Data Structures and Algorithms cs130a

Perfect Hashing Properties

If we store n keys in a hash table of size m = n2 using a universal
hash function, then the probability of collision is 1/2

There are C (n, 2) pairs of different pairs of keys

The probability that a pair collides is 1/m, if h is chosen from H
Let X be the number of collisions, since m = n2, the expected value
of X is

E [X] = C (n, 2) · 1

n2
=

n(n − 1)

2
· 1

n2
<

1

2

http://koclab.org Çetin Kaya Koç Winter 2020 32 / 34

http://koclab.org

Data Structures and Algorithms cs130a

Perfect Hashing Properties

Since we choose m = n2, a hash function h chosen at random from H
is more likely not to have collisions

Given a static set of n keys, it is easy to find a collision-free hash
function h

When n is large, a hash table of size m = n2 is excessive

However, in the two-level approach we only hash the entries in each
slot

On the first level the hash function h hashes n keys into m = n slots

Then, if nj keys hash to slot jm we use the secondary hash table of
size mj = n2j to provide a collision-free constant-time lookup

http://koclab.org Çetin Kaya Koç Winter 2020 33 / 34

http://koclab.org

Data Structures and Algorithms cs130a

Perfect Hashing Storage Requirement

In the first level table size is m = n, and therefore, the amount of the
memory used is O(n) for the primary hash table

In the secondary hash tables, each hash table Sj is of size n2j
To compute the total memory used in the secondary tables, we need
to know the expected sum of the squares of the number of keys nj
that hash to slot j , which turns out to be

E

m−1∑
j=0

mj

 = E

m−1∑
j=0

n2j

 < 2n

Therefore, the total secondary storage is also O(n)

http://koclab.org Çetin Kaya Koç Winter 2020 34 / 34

http://koclab.org

