Universal Hash Functions and Perfect Hashing

Universal Hashing

- If a malicious adversary chooses the keys to be hashed by some fixed hash function, he can choose n keys x_{i} such that they all hash to the same value

$$
H\left(x_{i}\right)=h \text { for } i=1,2, \ldots, n
$$

- This implies that the hash table will have $\Theta(n)$ retrieval time
- Any fixed hash function would have this worst-case behavior
- The only effective way to improve the situation is to choose the hash function randomly in a way that is independent of the keys
- This approach is called universal hashing
- It can yield provably good performance in the average, not matter which keys the adversary chooses

Universal Hashing

- In universal hashing, we select the hash function at random from a carefully designed class of hash functions
- Randomization guarantees that no single input will evoke worst-case behavior
- This selection is done at the beginning of each execution
- Therefore, the algorithm can behave differently on each execution, even for the same input
- This will guarantee good average-case performance
- Of course, poor performance will occur when the selected hash function hashes the keys poorly
- However, the probability of this situation is small, and is the same for any set of keys of the same size

Universal Hash Functions

- Let \mathcal{H} be a finite collection of hash functions that map a given universe U of keys into the range $\{0,1,2, \ldots, m-1\}$
- The set \mathcal{H} is said to be universal if for each pair of keys $x, y \in U$, the number of hash functions $h \in \mathcal{H}$ for which $h(x)=h(y)$ is at most $|\mathcal{H}| / m$
- In other words, with a hash function randomly chosen from \mathcal{H}, the chance of collision between x and y is $1 / m$
- This is the same chance of collision if $h(x)$ and $h(y)$ were randomly and independently chosen from the set $\{0,1,2, \ldots, m-1\}$

Average Case Behavior

- Suppose a hash function h is randomly chosen from a universal collection of hash functions
- It is used to hash n keys into a table T of size m, with chaining as the collision resolution method
- Let α be the load factor, defined as $\alpha=n / m$
- If x is not in the table, the expected length of the list that the key x hashes into is at most α
- If x is in the table, the expected length of the list that contains the key x is at most $1+\alpha$

Average Case Behavior

- Consider a pair of keys x and y; due to the definition of the universal hashing, the probability that they collide is

$$
P[h(x)=h(y)] \leq \frac{1}{m}
$$

- Let the random variable $R_{x y}$ take the value of 1 when $h(x)=h(y)$ and 0 otherwise; the expected value of $R_{x y}$ is

$$
E\left[R_{x y}\right]=\frac{1}{m}
$$

- Let the random variable S_{x} be the number of keys other than x that hash to the same slot as x, given as

$$
S_{x}=\sum_{\substack{y \in T \\ y \neq x}} R_{x y}
$$

Average Case Behavior

- Therefore, we have

$$
E\left[S_{x}\right]=E\left[\sum_{\substack{y \in T \\ y \neq x}} R_{x y}\right]=\sum_{\substack{y \in T \\ y \neq x}} E\left[R_{x y}\right] \leq \sum_{\substack{y \in T \\ y \neq x}} \frac{1}{m}
$$

- If $x \notin T$, then the list length is equal to S_{x} and

$$
\mid\{y: y \in T \text { and } y \neq x\} \mid=n
$$

and thus the expected list length $E\left[S_{x}\right] \leq n / m=\alpha$

- If $x \in T$, then because x appears in the list $T[h(x)]$ and the count does not include x, we have the list length as $S_{x}+1$ and

$$
\mid\{y: y \in T \text { and } y \neq x\} \mid=n-1
$$

and thus the expected list length

$$
E\left[S_{x}\right]+1 \leq(n-1) / m+1=1+\alpha-1 / m<1+\alpha
$$

Average Case Behavior

Theorem

Using universal hashing and collision resolution by chaining in an initially empty table with m slots, it takes $\Theta(n)$ time to handle any sequence of n Insert, Find, and Delete operations containing $O(m)$ Insert operations.

- The number of Insert operations is $O(m)$, thus we have $n=O(m)$ which implies $\alpha=O(1)$
- The Insert and Delete operations take constant time, and the expected time for Find operation is $O(1)$ since the expected length of the list is at most α
- Therefore, the expected time for the entire sequence of n operations is $O(n)$ since each operation takes $\Omega(1)$, the bound $\Theta(n)$ is obtained

Designing Universal Hash Functions

- We will give 3 constructions and show them that they are universal
- The first construction is based on linear congruential arithmetic with two distinct moduli: p and m, where p is a prime
- The second construction uses a random 0-1 matrix and mod 2 arithmetic
- The third method is based the dot-product modulo m

Construction of $\mathcal{H}_{p, m}$

- Select a prime p that is large enough so that every possible key is in the range 0 to $p-1$
- Let $\mathcal{Z}_{p}=\{0,1,2, \ldots, p-1\}$ and $\mathcal{Z}_{p}^{*}=\{1,2, \ldots, p-1\}$
- The size of the universe of the keys is p which is larger than the hash table size m, i.e., $p>m$
- Consider the integer $a \in \mathcal{Z}_{p}^{*}$ and $b \in \mathcal{Z}_{p}$
- Define the hash function family as

$$
h_{a, b}(x)=(a \cdot x+b \bmod p) \bmod m
$$

- The class of hash functions is defined as

$$
\mathcal{H}_{p, m}=\left\{h_{a, b} \mid a \in \mathcal{Z}_{p}^{*} \text { and } b \in \mathcal{Z}_{p}\right\}
$$

Properties of $\mathcal{H}_{p, m}$

- An Example: $p=17$ and $m=6$, we have $h_{3,4}(8)=5$ since

$$
\begin{aligned}
h_{3,4}(8) & =((3 \cdot 8+4) \bmod 17) \bmod 6 \\
& =(28 \bmod 17) \bmod 6 \\
& =11 \bmod 6 \\
& =5
\end{aligned}
$$

- Each hash function $h_{a, b}$ maps \mathcal{Z}_{p} to \mathcal{Z}_{m} : the keys are in the range 0 to $p-1$, while the hash values are from 0 to $m-1$
- This family has the nice property that the table size m is arbitrary, not necessarily a prime
- There are $p-1$ choices of a and p choices of b, and thus, there are $p(p-1)$ hash functions

Proving Universality of $\mathcal{H}_{p, m}$

Theorem

The class $\mathcal{H}_{p, m}$ of hash functions is universal.

- Consider two distinct keys x and y from \mathcal{Z}_{p}, so that $x \neq y$
- For a given hash function $h_{a, b}$, first compute

$$
\begin{aligned}
& r=(a \cdot x+b) \bmod p \\
& s=(a \cdot y+b) \bmod p
\end{aligned}
$$

- $r-s=a(x-y)$ is nonzero since $x \neq y$ and $a \neq 0$, and p is prime
- Therefore, if $x \neq y$, we will always have $r \neq s$
- There will not be collision on the "mod p level"

Proving Universality of $\mathcal{H}_{p, m}$

- Moreover, each possible $p(p-1)$ pair of (a, b) with $a \neq 0$ yields a different pair (r, s) since

$$
\begin{aligned}
& a=(r-s)(x-y)^{-1} \bmod p \\
& b=(r-a x) \bmod p
\end{aligned}
$$

- There are $p(p-1)$ possible pairs (r, s) with $r \neq s$, and thus, there is a one-to-one correspondence between pairs (a, b) with $a \neq 0$ and pairs (r, s) with $r \neq s$

Proving Universality of $\mathcal{H}_{p, m}$

- Thus, for any given pairs of inputs x and y, if we pick (a, b) uniformly at random from $\mathcal{Z}_{p}^{*} \times \mathcal{Z}_{p}$, the resulting pair is equally likely to be any pair of distinct values modulo p
- The probability that distinct keys x and y collide is equal to the probability $r=s(\bmod m)$ when r and s are randomly chosen as distinct values modulo p
- Furthermore, the probability that s collides with r when reduced modulo m is at most $1 / m$, and therefore

$$
P\left[h_{a, b}(x)=h_{a, b}(y)\right] \leq 1 / m
$$

so that $\mathcal{H}_{p, m}$ is universal

Construction of the Matrix Method

- Assume that the keys are u bits long: $x=\left(x_{u-1} \cdots x_{1} x_{0}\right)$
- The hash table size as a power of two, as $m=2^{b}$, and the hash values $z=h(x)$ are b-bit integers: $z=\left(z_{b-1} \cdots z_{1} z_{0}\right)$
- The hash function h is computed using a 0-1 random matrix of dimension $b \times u$, denoted as A
- The hash operation $h(x)$ takes the key x expressed as a u-bit binary number and multiplies with the matrix A to obtain the b-bit hash
- All computations are done in mod 2: the Galois field GF(2)

Properties of the Matrix Method

- An Example: Let $u=4$ and $b=3$, therefore, the keys are 4 -bit long $x=\left(x_{3} x_{2} x_{1} x_{0}\right)$ and the hash values are 3-bit long $z=\left(z_{2} z_{1} z_{0}\right)$
- The random 0-1 matrix is of size $b \times u=3 \times 4$
- Taking A as below, the computation of $z=h(x)$ is performed using

$$
\left[\begin{array}{l}
z_{0} \\
z_{1} \\
z_{2}
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{0} \\
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

- Let $x=\left(x_{3} x_{2} x_{1} x_{0}\right)=(0101)$, we obtain $\left(z_{2} z_{1} z_{0}\right)=(011)$ as

$$
\left[\begin{array}{l}
z_{0} \\
z_{1} \\
z_{2}
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
1+0+0+0 \\
0+0+1+0 \\
1+0+1+0
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

Proving Universality

Theorem

For $x \neq y, P[h(x)=h(y)]=1 / m=2^{-b}$, therefore the class of matrix hash functions with a randomly selected 0-1 matrices is universal.

- Take an arbitrary x and y
- They must differ in at least one bit position
- Assume that x and y differ in the ith bit, i.e., they are given as $\left(x_{u-1} \cdots x_{i} \cdots x_{1} x_{0}\right)$ and $\left(y_{u-1} \cdots y_{i} \cdots y_{1} y_{0}\right)$ such that $x_{i} \neq y_{i}$
- WLOG, assume $x_{i}=0$ and $y_{i}=1$
- Now choose the entire A matrix except its i th column

Proving Universality

- Since this is the column that multiplies the ith bit x or y, the hash values $h(x)$ and $h(y)$ are the same, except the contribution of the i th column of A is not included yet
- The length of i th column is b, and there are 2^{b} different choices for this column
- Every time we change a bit in this column, we flip the corresponding bit in $h(y)$ since $y_{i}=1$
- There are exactly one in 2^{b} chance that $h(x)=h(y)$
- Therefore, the hash function is universal

Proving Universality

- Consider $x=\left(x_{3} x_{2} x_{1} x_{0}\right)=(0101)$ and $y=\left(y_{3} y_{2} y_{1} y_{0}\right)=(1101)$ so that x and y differ only in the 3rd bit $x_{3} \neq y_{3}$

$$
\begin{gathered}
{\left[\begin{array}{l}
z_{0} \\
z_{1} \\
z_{2}
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & \mathbf{0} \\
0 & 1 & 1 & \mathbf{1} \\
1 & 1 & 1 & \mathbf{0}
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
1 \\
\mathbf{0}
\end{array}\right] \text { and }\left[\begin{array}{l}
z_{0}^{\prime} \\
z_{1}^{\prime} \\
z_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & \mathbf{0} \\
0 & 1 & 1 & \mathbf{1} \\
1 & 1 & 1 & \mathbf{0}
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
1 \\
\mathbf{1}
\end{array}\right]} \\
{\left[\begin{array}{l}
z_{0} \\
z_{1} \\
z_{2}
\end{array}\right]} \\
=\left[\begin{array}{l}
(1 \cdot 1+0 \cdot 0+0 \cdot 1)+\mathbf{0} \cdot 0 \\
(0 \cdot 1+1 \cdot 0+1 \cdot 1)+\mathbf{1} \cdot 0 \\
(1 \cdot 1+1 \cdot 0+0 \cdot 1)+\mathbf{0} \cdot 0
\end{array}\right] \\
{\left[\begin{array}{l}
z_{0}^{\prime} \\
z_{1}^{\prime} \\
z_{2}^{\prime}
\end{array}\right]}
\end{gathered}=\left[\begin{array}{l}
(1 \cdot 1+0 \cdot 0+0 \cdot 1)+\mathbf{0} \cdot 1 \\
(0 \cdot 1+1 \cdot 0+1 \cdot 1)+\mathbf{1} \cdot 1 \\
(1 \cdot 1+1 \cdot 0+0 \cdot 1)+\mathbf{0} \cdot 1
\end{array}\right] \$
$$

Proving Universality

- The contribution of the first three columns of the A matrix to the hash value is the same, and the difference occurs in the contribution of the last column

$$
\left[\begin{array}{l}
z_{0} \\
z_{1} \\
z_{2}
\end{array}\right]=\left[\begin{array}{l}
(1)+\mathbf{0} \cdot 0 \\
(1)+\mathbf{1} \cdot 0 \\
(1)+\mathbf{0} \cdot 0
\end{array}\right] \text { and }\left[\begin{array}{l}
z_{0}^{\prime} \\
z_{1}^{\prime} \\
z_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{l}
(1)+\mathbf{0} \cdot 1 \\
(1)+\mathbf{1} \cdot 1 \\
(1)+\mathbf{0} \cdot 1
\end{array}\right]
$$

- As we use A matrices each of which is different in the last column (there are 8 such columns), we obtain different $\left[z_{0}^{\prime}, z_{1}^{\prime}, z_{2}^{\prime}\right]^{T}$ vectors

$$
\left[\begin{array}{l}
z_{0} \\
z_{1} \\
z_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \text { and }\left[\begin{array}{l}
z_{0}^{\prime} \\
z_{1}^{\prime} \\
z_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{l}
(1)+\mathbf{0} \cdot 1 \\
(1)+\mathbf{1} \cdot 1 \\
(1)+\mathbf{0} \cdot 1
\end{array}\right]
$$

Proving Universality

- Only in 0 case in which the last column is $[0,0,0]^{T}$, we will obtain $\left[z_{0}^{\prime}, z_{1}^{\prime}, z_{2}^{\prime}\right]^{T}=\left[z_{0}, z_{1}, z_{2}\right]^{T}$, which is the case when the last column of A is selected as $[0,0,0]^{T}$

$$
\begin{aligned}
& {\left[\begin{array}{l}
(1)+\mathbf{0} \cdot \mathbf{1} \\
(1)+\mathbf{0} \cdot 1 \\
(1)+\mathbf{0} \cdot 1
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] ;\left[\begin{array}{l}
(1)+\mathbf{0} \cdot \mathbf{1} \\
(1)+\mathbf{0} \cdot 1 \\
(1)+\mathbf{1} \cdot 1
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] ;\left[\begin{array}{l}
(1)+\mathbf{0} \cdot \mathbf{1} \\
(1)+\mathbf{1} \cdot 1 \\
(1)+\mathbf{0} \cdot 1
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] ;\left[\begin{array}{l}
(1)+\mathbf{0} \cdot \mathbf{1} \\
(1)+\mathbf{1} \cdot 1 \\
(1)+\mathbf{1} \cdot 1
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]} \\
& {\left[\begin{array}{l}
(1)+\mathbf{1} \cdot \mathbf{1} \\
(1)+\mathbf{0} \cdot 1 \\
(1)+\mathbf{0} \cdot 1
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right] ;\left[\begin{array}{l}
(1)+\mathbf{1} \cdot \mathbf{1} \\
(1)+\mathbf{0} \cdot 1 \\
(1)+\mathbf{1} \cdot \mathbf{1}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] ;\left[\begin{array}{l}
(1)+\mathbf{1} \cdot \mathbf{1} \\
(1)+\mathbf{1} \cdot \mathbf{1} \\
(1)+\mathbf{0} \cdot 1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] ;\left[\begin{array}{l}
(1)+\mathbf{1} \cdot \mathbf{1} \\
(1)+\mathbf{1} \cdot 1 \\
(1)+\mathbf{1} \cdot 1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]}
\end{aligned}
$$

- Therefore $h(x)=h(y)$ only in 1 out of 8 cases
- There are exactly one in 2^{b} chance that $h(x)=h(y)$

Construction of the Dot-Product Mod m Method

- Let m be prime
- Decompose the key x into $r+1$ digits each with the value in the set $\mathcal{Z}_{m}=\{0,1,2, \ldots, m-1\}$
- We have $x=\left(x_{r} x_{r-1} \cdots x_{1} x_{0}\right)$ with $x_{i} \in \mathcal{Z}_{m}$
- Let $a=\left(a_{r} a_{r-1} \cdots a_{1} a_{0}\right)$ be a random vector such that $a_{i} \in \mathcal{Z}_{m}$
- Define the hash function family as

$$
h_{a}(x)=\sum_{i=0}^{r} a_{i} x_{i} \quad(\bmod m)
$$

- The size of \mathcal{H} is m^{r+1}

Proving Universality

Theorem

The set $\mathcal{H}=\left\{h_{a}\right\}$ is universal.

- Let $x=\left(x_{r} \cdots x_{1} x_{0}\right)$ and $y=\left(y_{r} \cdots y_{1} y_{0}\right)$ be two distinct keys
- Thus, they differ in at least one digit position, WLOG position 0
- For how many $h_{a} \in \mathcal{H}$ do x and y collide?
- The equality $h(x)=h(y)$ implies

$$
\sum_{i=0}^{r} a_{i} x_{i}=\sum_{i=0}^{r} a_{i} y_{i} \quad(\bmod m)
$$

Proving Universality

- Equivalently we have

$$
\begin{aligned}
\sum_{i=0}^{r} a_{i}\left(x_{i}-y_{i}\right) & =0(\bmod m) \\
a_{0}\left(x_{0}-y_{0}\right)+\sum_{i=1}^{r} a_{i}\left(x_{i}-y_{i}\right) & =0(\bmod m) \\
a_{0}\left(x_{0}-y_{0}\right) & =-\sum_{i=1}^{r} a_{i}\left(x_{i}-y_{i}\right)(\bmod m)
\end{aligned}
$$

Proving Universality

- Since $x_{0} \neq y_{0}$ and m is prime, the inverse $\left(x_{0}-y_{0}\right)^{-1}(\bmod m)$ exists, which implies

$$
a_{0}=-\left(x_{0}-y_{0}\right)^{-1}\left[\sum_{i=1}^{r} a_{i}\left(x_{i}-y_{i}\right)\right] \quad(\bmod m)
$$

- Thus, for any choices of $a_{1}, a_{2}, \ldots, a_{r}$, exactly one choice of a_{0} causes x and y collide
- How many h_{a} functions cause x and y collide?

Proving Universality

- There are m choices for each of $a_{1}, a_{2}, \ldots, a_{r}$ but once they are chosen, there is only once choice of a_{0} that causes x and y collide
- Therefore, the number of hash functions that causes x and y collide is

$$
m^{r} \cdot 1=m^{r}=\frac{m^{r+1}}{m}=\frac{|\mathcal{H}|}{m}
$$

that makes \mathcal{H} a universal hash function family

Perfect Hashing

- A hashing technique is called perfect hashing if $O(1)$ memory accesses are required to perform a search in the worst case
- To create a perfect hashing, we use two levels of hashing, with universal hashing at each level

Perfect Hashing

- The first level is the same as hashing with chaining: we hash n keys into m slots using a hash function h from a family of universal hash functions
- However, instead of making a linked list of keys hashing to slot j, we use a secondary hash table S_{j} with an associate hash function h_{j}
- By choosing the hash functions h_{j} carefully, we can guarantee that there are no collisions at the secondary level
- In order to guarantee that there are no collisions on the secondary level, we need to let the size m_{j} of the hash table S_{j} be the square of the number n_{j} of keys hashing to slop j

Perfect Hashing

- Consider the key set $K=\{10,22,37,40,52,60,70,72,74\}$
- The first level hash function is

$$
h(k)=(a k+b \bmod p) \bmod m
$$

with parameters $(m, a, b, p)=(9,3,42,101)$, where m is the table size

- For example, $h(75)$ is computed as

$$
\begin{aligned}
h(75) & =(3 \cdot 75+42 \bmod 101) \bmod 9 \\
& =(267 \bmod 101) \bmod 9 \\
& =65 \bmod 9 \\
& =2
\end{aligned}
$$

Perfect Hashing

- A secondary hash table S_{j} stores all keys hashing to slot j
- The size of hash table S_{j} is $m_{j}=n_{j}^{2}$, where n_{j} is the number of keys hashing to slot j
- The associated hash function of S_{j} is

$$
h_{j}(k)=\left(a_{j} k+b_{j} \bmod p\right) \bmod m_{j}
$$

Perfect Hashing

- On the second level, we use the hash function belonging to Slot 2, which has the parameters $\left(m_{2}, a_{2}, b_{2}\right)=(9,10,18)$ and the same prime $p=101$, therefore, we compute $h_{2}(75)$ as

$$
\begin{aligned}
h_{2}(75) & =(10 \cdot 75+18 \bmod 101) \bmod 9 \\
& =7
\end{aligned}
$$

and place the key 75 in the 7 th cell of the Slot 2 table

Perfect Hashing Properties

- If we store n keys in a hash table of size $m=n^{2}$ using a universal hash function, then the probability of collision is $1 / 2$
- There are $C(n, 2)$ pairs of different pairs of keys
- The probability that a pair collides is $1 / m$, if h is chosen from \mathcal{H}
- Let X be the number of collisions, since $m=n^{2}$, the expected value of X is

$$
E[X]=C(n, 2) \cdot \frac{1}{n^{2}}=\frac{n(n-1)}{2} \cdot \frac{1}{n^{2}}<\frac{1}{2}
$$

Perfect Hashing Properties

- Since we choose $m=n^{2}$, a hash function h chosen at random from \mathcal{H} is more likely not to have collisions
- Given a static set of n keys, it is easy to find a collision-free hash function h
- When n is large, a hash table of size $m=n^{2}$ is excessive
- However, in the two-level approach we only hash the entries in each slot
- On the first level the hash function h hashes n keys into $m=n$ slots
- Then, if n_{j} keys hash to slot $j m$ we use the secondary hash table of size $m_{j}=n_{j}^{2}$ to provide a collision-free constant-time lookup

Perfect Hashing Storage Requirement

- In the first level table size is $m=n$, and therefore, the amount of the memory used is $O(n)$ for the primary hash table
- In the secondary hash tables, each hash table S_{j} is of size n_{j}^{2}
- To compute the total memory used in the secondary tables, we need to know the expected sum of the squares of the number of keys n_{j} that hash to slot j, which turns out to be

$$
E\left[\sum_{j=0}^{m-1} m_{j}\right]=E\left[\sum_{j=0}^{m-1} n_{j}^{2}\right]<2 n
$$

- Therefore, the total secondary storage is also $O(n)$

