
 Splay Trees - 1

Splay Trees

n In balanced tree schemes, explicit rules are
followed to ensure balance.

n In splay trees, there are no such rules.
n Search, insert, and delete operations are like in

binary search trees, except at the end of each
operation a special step called splaying is done.

n Splaying ensures that all operations take O(lg n)
amortized time.

n First, a quick review of BST operations…

 Splay Trees - 2

BST: Search
44

88 17

65 97 32

28 54 82

76 29

80

Search(25) Search(76)

 Splay Trees - 3

BST: Insert
44

88 17

65 97 32

28 54 82

76 29

80

Insert(78)

78

 Splay Trees - 4

BST: Delete
44

88 17

65 97 32

28 54 82

76 29

80

78

Delete(32)

Has only one
child: just splice
out 32.

 Splay Trees - 5

BST: Delete
44

88 17

65 97 28

54 82

76

29

80

78

Delete(32)

 Splay Trees - 6

BST: Delete
44

88 17

65 97 32

28 54 82

76 29

80

78

Delete(65)

Has two children:
Replace 65 by successor,
76, and splice out
successor.

Note: Successor can have
at most one child.

 Splay Trees - 7

BST: Delete
44

88 17

76 97 32

28 54 82

29 80

78

Delete(65)

 Splay Trees - 8

Splaying

n In splay trees, after performing an ordinary
BST Search, Insert, or Delete, a splay
operation is performed on some node x (as
described later).

n The splay operation moves x to the root of the
tree.

n The splay operation consists of sub-operations
called zig-zig, zig-zag, and zig.

 Splay Trees - 9

Zig-Zig

10

20

30

T3 T4

T2

T1

z

y

x

30

20

10

T1 T2

T3

T4

x

y

z

(Symmetric case too)

Note: x’s depth decreases by two.

x has a grandparent

 Splay Trees - 10

Zig-Zag

10

30

20

T3

T4

T2

T1

z

y

x

20

10

T1 T2 T3 T4

x

z

(Symmetric case too)

Note: x’s depth decreases by two.

30
y

x has a grandparent

 Splay Trees - 11

Zig

20

10

T1 T2 T3 T4

x

y

(Symmetric case too)

Note: x’s depth decreases by one.

30
w

10

20

30

T3 T4

T2

T1

y

x

w

x has no grandparent (so, y is the root)

Note: w could be NIL

 Splay Trees - 12

Complete Example
44

88 17

65 97 32

28 54 82

76 29

80

78

Splay(78) 50

x

y

z

zig-zag

 Splay Trees - 13

Complete Example
44

88 17

65 97 32

28 54 82

78 29

80 76

Splay(78) 50

zig-zag

x

y z

 Splay Trees - 14

Complete Example
44

88 17

65 97 32

28 54 82

78 29

80 76

Splay(78) 50

x

y

z

zig-zag

 Splay Trees - 15

Complete Example
44

88 17

65

97 32

28

54

82

78

29 80 76

Splay(78) 50

zig-zag
z y

x

 Splay Trees - 16

Complete Example
44

88 17

65

97 32

28

54

82

78

29 80 76

Splay(78) 50

x

y

z

zig-zag

 Splay Trees - 17

Complete Example
44

88 17

65
97 32

28
54

82

29

80
76

Splay(78)

50

78

zig-zag

z y

x

 Splay Trees - 18

Complete Example
44

88 17

65
97 32

28
54

82

29

80
76

Splay(78)

50

78

y
x

w

zig

 Splay Trees - 19

Complete Example
44

88 17

65
97 32

28
54

82

29

80
76

Splay(78)

50

78 x
y

w

zig

Result of splaying

n The result is a binary tree, with the left subtree

having all keys less than the root, and the right
subtree having keys greater than the root.

n Also, the final tree is “more balanced” than the
original.

n However, if an operation near the root is done,
the tree can become less balanced.

 Splay Trees - 20

 Splay Trees - 21

When to Splay
n Search:

w Successful: Splay node where key was found.
w Unsuccessful: Splay last-visited internal node (i.e.,

last node with a key).
n Insert:

w Splay newly added node.

n Delete:
w Splay parent of removed node (which is either the

node with the deleted key or its successor).
n Note: All operations run in O(h) time, for a tree

of height h.

