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Splay Trees 

n In balanced tree schemes, explicit rules are 
followed to ensure balance. 

n In splay trees, there are no such rules. 
n Search, insert, and delete operations are like in 

binary search trees, except at the end of each 
operation a special step called splaying is done. 

n Splaying ensures that all operations take O(lg n) 
amortized time. 

n First, a quick review of BST operations…  
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BST: Insert 
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BST: Delete 
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Delete(32) 

Has only one 
child: just splice 
out 32. 
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BST: Delete 
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BST: Delete 
44 

88 17 

65 97 32 

28 54 82 

76 29 

80 

78 

Delete(65) 

Has two children: 
Replace 65 by successor, 
76, and splice out 
successor. 
 
Note: Successor can have 
at most one child. 
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BST: Delete 
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Splaying 

n In splay trees, after performing an ordinary 
BST Search, Insert, or Delete, a splay 
operation is performed on some node x (as 
described later). 

n The splay operation moves x to the root of the 
tree. 

n The splay operation consists of sub-operations 
called zig-zig, zig-zag, and zig. 
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Zig-Zig 
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(Symmetric case too) 
 

Note: x’s depth decreases by two. 

x has a grandparent 
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Zig-Zag 
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Zig 
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Note: x’s depth decreases by one. 
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x has no grandparent (so, y is the root) 
 

Note: w could be NIL 
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Complete Example 
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Complete Example 
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Complete Example 
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Complete Example 
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Complete Example 
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Complete Example 
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Result of splaying   

 
n The result is a binary tree, with the left subtree 

having all keys less than the root, and the right 
subtree having keys greater than the root. 

n Also, the final tree is “more balanced” than the 
original. 

n However, if an operation near the root is done, 
the tree can become less balanced. 
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When to Splay 
n Search: 

w Successful: Splay node where key was found. 
w Unsuccessful: Splay last-visited internal node (i.e., 

last node with a key). 
n Insert: 

w Splay newly added node. 

n Delete: 
w Splay parent of removed node (which is either the 

node with the deleted key or its successor).  
n Note: All operations run in O(h) time, for a tree 

of height h. 


