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The Disjoint Sets Class

In this chapter, we describe an efficient data structure to solve the equivalence problem.
The data structure is simple to implement. Each routine requires only a few lines of code,
and a simple array can be used. The implementation is also extremely fast, requiring
constant average time per operation. This data structure is also very interesting from a
theoretical point of view, because its analysis is extremely difficult; the functional form of
the worst case is unlike any we have yet seen. For the disjoint sets data structure, we will . ..

* Show how it can be implemented with minimal coding effort.
* Greatly increase its speed, using just two simple observations.
* Analyze the running time of a fast implementation.

* See a simple application.

8.1 Equivalence Relations

A relation R is defined on a set S if for every pair of elements (a,b), a,b € S, aRb is either
true or false. If a Rb is true, then we say that a is related to b.
An equivalence relation is a relation R that satisfies three properties:

1. (Reflexive) aRa, foralla € S.
2. (Symmetric) aRb if and only if bRa.
3. (Transitive) aRb and b R ¢ implies that aRc.

We will consider several examples.

The < relationship is not an equivalence relationship. Although it is reflexive, since
a < a, and transitive, since a < b and b < ¢ implies a < ¢, it is not symmetric, since a < b
does not imply b < a.

Electrical connectivity, where all connections are by metal wires, is an equivalence
relation. The relation is clearly reflexive, as any component is connected to itself. If a is
electrically connected to b, then b must be electrically connected to a, so the relation is
symmetric. Finally, if a is connected to b and b is connected to ¢, then a is connected to c.
Thus electrical connectivity is an equivalence relation.

Two cities are related if they are in the same country. It is easily verified that this is an
equivalence relation. Suppose town a is related to b if it is possible to travel from a to b by
taking roads. This relation is an equivalence relation if all the roads are two-way. 351
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8.2 The Dynamic Equivalence Problem

Given an equivalence relation ~, the natural problem is to decide, for any a and b, ifa ~ b.
If the relation is stored as a two-dimensional array of Boolean variables, then, of course,
this can be done in constant time. The problem is that the relation is usually not explicitly,
but rather implicitly, defined.

As an example, suppose the equivalence relation is defined over the five-element set
{a1,d2,a3,a4,as}. Then there are 25 pairs of elements, each of which is either related or
not. However, the information a; ~ az, a3 ~ a4, as ~ aj, a4 ~ ap implies that all pairs
are related. We would like to be able to infer this quickly.

The equivalence class of an element a € S is the subset of S that contains all the
elements that are related to a. Notice that the equivalence classes form a partition of S:
Every member of S appears in exactly one equivalence class. To decide if a ~ b, we need
only to check whether a and b are in the same equivalence class. This provides our strategy
to solve the equivalence problem.

The input is initially a collection of N sets, each with one element. This initial repre-
sentation is that all relations (except reflexive relations) are false. Each set has a different
element, so that S; N S; = @; this makes the sets disjoint.

There are two permissible operations. The first is find, which returns the name of the
set (that is, the equivalence class) containing a given element. The second operation adds
relations. If we want to add the relation a ~ b, then we first see if a and b are already
related. This is done by performing finds on both a and b and checking whether they are
in the same equivalence class. If they are not, then we apply union.! This operation merges
the two equivalence classes containing a and b into a new equivalence class. From a set
point of view, the result of U is to create a new set S, = S; U S;, destroying the originals and
preserving the disjointness of all the sets. The algorithm to do this is frequently known as
the disjoint set union/find algorithm for this reason.

This algorithm is dynamic because, during the course of the algorithm, the sets can
change via the union operation. The algorithm must also operate online: When a find
is performed, it must give an answer before continuing. Another possibility would be
an offline algorithm. Such an algorithm would be allowed to see the entire sequence of
unions and finds. The answer it provides for each find must still be consistent with all the
unions that were performed up until the find, but the algorithm can give all its answers
after it has seen all the questions. The difference is similar to taking a written exam (which
is generally offline—you only have to give the answers before time expires) or an oral
exam (which is online, because you must answer the current question before proceeding
to the next question).

Notice that we do not perform any operations comparing the relative values of elements
but merely require knowledge of their location. For this reason, we can assume that all the
elements have been numbered sequentially from 0 to N — 1 and that the numbering can

union is a (little-used) reserved word in C++. We use it throughout in describing the union/find algorithm,
but when we write code, the member function will be named unionSets.
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8.3 Basic Data Structure

be determined easily by some hashing scheme. Thus, initially we have S; = {i} fori = 0
through N — 1.2

Our second observation is that the name of the set returned by find is actually fairly
arbitrary. All that really matters is that find(a)==find(b) is true if and only if a and b are in
the same set.

These operations are important in many graph theory problems and also in compilers
which process equivalence (or type) declarations. We will see an application later.

There are two strategies to solve this problem. One ensures that the find instruction can
be executed in constant worst-case time, and the other ensures that the union instruction
can be executed in constant worst-case time. It has recently been shown that both cannot
be done simultaneously in constant worst-case time.

We will now briefly discuss the first approach. For the find operation to be fast, we
could maintain, in an array, the name of the equivalence class for each element. Then find
is just a simple O(1) lookup. Suppose we want to perform union(a,b). Suppose that a is in
equivalence class i and b is in equivalence class j. Then we scan down the array, changing
all is to j. Unfortunately, this scan takes ®(N). Thus, a sequence of N — 1 unions (the
maximum, since then everything is in one set) would take O(N?) time. If there are Q(N?)
find operations, this performance is fine, since the total running time would then amount
to O(1) for each union or find operation over the course of the algorithm. If there are fewer
finds, this bound is not acceptable.

One idea is to keep all the elements that are in the same equivalence class in a linked
list. This saves time when updating, because we do not have to search through the entire
array. This by itself does not reduce the asymptotic running time, because it is still possible
to perform ®(N?) equivalence class updates over the course of the algorithm.

If we also keep track of the size of each equivalence class, and when performing unions
we change the name of the smaller equivalence class to the larger, then the total time
spent for N — 1 merges is O(N logN). The reason for this is that each element can have
its equivalence class changed at most log N times, since every time its class is changed, its
new equivalence class is at least twice as large as its old. Using this strategy, any sequence
of M finds and up to N — 1 unions takes at most O(M + N log N) time.

In the remainder of this chapter, we will examine a solution to the union/find problem
that makes unions easy but finds hard. Even so, the running time for any sequence of at
most M finds and up to N — 1 unions will be only a little more than O(M + N).

8.3 Basic Data Structure

Recall that the problem does not require that a find operation return any specific name,
just that finds on two elements return the same answer if and only if they are in the same
set. One idea might be to use a tree to represent each set, since each element in a tree has
the same root. Thus, the root can be used to name the set. We will represent each set by a
tree. (Recall that a collection of trees is known as a forest.) Initially, each set contains one
element. The trees we will use are not necessarily binary trees, but their representation is

2 This reflects the fact that array indices start at 0.
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Figure 8.1 Eight elements, initially in different sets

easy, because the only information we will need is a parent link. The name of a set is given
by the node at the root. Since only the name of the parent is required, we can assume that
this tree is stored implicitly in an array: Each entry s[i] in the array represents the parent
of element i. If i is a root, then s[i] = —1. In the forest in Figure 8.1, s[i] = —1 for
0 <i < 8. As with binary heaps, we will draw the trees explicitly, with the understanding
that an array is being used. Figure 8.1 shows the explicit representation. We will draw the
root’s parent link vertically for convenience.

To perform a union of two sets, we merge the two trees by making the parent link of
one tree’ root link to the root node of the other tree. It should be clear that this operation
takes constant time. Figures 8.2, 8.3, and 8.4 represent the forest after each of union(4,5),
union(6,7), union(4,6), where we have adopted the convention that the new root after the
union(x,y) is x. The implicit representation of the last forest is shown in Figure 8.5.

A find(x) on element x is performed by returning the root of the tree containing x.
The time to perform this operation is proportional to the depth of the node representing
x, assuming, of course, that we can find the node representing x in constant time. Using
the strategy above, it is possible to create a tree of depth N — 1, so the worst-case running

éééé@aéé

Figure 8.2 After union(4,5)

ééééébéb

Figure 8.3 After union(6,7)
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Figure 8.4 After union(4,6)

Figure 8.5 Implicit representation of previous tree

time of a find is ®(N). Typically, the running time is computed for a sequence of M inter-
mixed instructions. In this case, M consecutive operations could take ®(MN) time in the
worst case.

The code in Figures 8.6 through 8.9 represents an implementation of the basic algo-
rithm, assuming that error checks have already been performed. In our routine, unions are
performed on the roots of the trees. Sometimes the operation is performed by passing any
two elements and having the union perform two finds to determine the roots. In previ-
ously seen data structures, find has always been an accessor, and thus a const member
function. Section 8.5 describes a mutator version that is more efficient. Both versions can

1 class DisjSets

2

3 pubTlic:

4 explicit DisjSets( int numElements );
5

6 int find( int x ) const;

7 int find( int x );

8 void unionSets( int rootl, int root2 );
9
10 private:
11 vector<int> s;
12}

Figure 8.6 Disjoint sets class interface
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/**

* Construct the disjoint sets object.

* numElements is the initial number of disjoint sets.

*/

DisjSets::DisjSets( int numElements ) : s{ numElements, - 1 }
{

}

Figure 8.7 Disjoint sets initialization routine

~N O U AW N =

* Union two disjoint sets.

* For simplicity, we assume rootl and root2 are distinct
* and represent set names.

* rootl is the root of set 1.

root2 is the root of set 2.

*/

void DisjSets::unionSets( int rootl, int root2 )

{

s[ root2 ] = rootl;

— O O 0 N O LW N =
*

—

}

Figure 8.8 union (not the best way)

1 /**

2 * Perform a find.

3 * Error checks omitted again for simplicity.
4 * Return the set containing x.

5 */

6 int DisjSets::find( int x ) const

7

8 if(s[x]<0)

9 return x;

10 else

11 return find( s[ x ] );
12}

Figure 8.9 A simple disjoint sets find algorithm

be supported simultaneously. The mutator is always called, unless the controlling object is
unmodifiable.

The average-case analysis is quite hard to do. The least of the problems is that the
answer depends on how to define average (with respect to the union operation). For
instance, in the forest in Figure 8.4, we could say that since there are five trees, there are
5-4 = 20 equally likely results of the next union (as any two different trees can be unioned).



8.4 Smart Union Algorithms

Of course, the implication of this model is that there is only a % chance that the next union
will involve the large tree. Another model might say that all unions between any two ele-
ments in different trees are equally likely, so a larger tree is more likely to be involved in the
next union than a smaller tree. In the example above, there is an % chance that the large
tree is involved in the next union, since (ignoring symmetries) there are 6 ways in which to
merge two elements in {0, 1,2, 3}, and 16 ways to merge an element in {4, 5,6, 7} with an
element in {0, 1,2, 3}. There are still more models and no general agreement on which is
the best. The average running time depends on the model; ®(M), (M log N), and ®(MN)
bounds have actually been shown for three different models, although the latter bound is
thought to be more realistic.

Quadratic running time for a sequence of operations is generally unacceptable.
Fortunately, there are several ways of easily ensuring that this running time does not occur.

8.4 Smart Union Algorithms

The unions above were performed rather arbitrarily, by making the second tree a subtree of
the first. A simple improvement is always to make the smaller tree a subtree of the larger,
breaking ties by any method; we call this approach union-by-size. The three unions in the
preceding example were all ties, and so we can consider that they were performed by size.
If the next operation were union(3,4), then the forest in Figure 8.10 would form. Had the
size heuristic not been used, a deeper tree would have been formed (Fig. 8.11).

We can prove that if unions are done by size, the depth of any node is never more than
logN. To see this, note that a node is initially at depth 0. When its depth increases as a
result of a union, it is placed in a tree that is at least twice as large as before. Thus, its depth
can be increased at most log N times. (We used this argument in the quick-find algorithm at
the end of Section 8.2.) This implies that the running time for a find operation is O(log N),
and a sequence of M operations takes O(M log N). The tree in Figure 8.12 shows the worst
tree possible after 16 unions and is obtained if all unions are between equal-sized trees (the
worst-case trees are binomial trees, discussed in Chapter 6).

To implement this strategy, we need to keep track of the size of each tree. Since we are
really just using an array, we can have the array entry of each root contain the negative of

b o 6

Figure 8.10 Result of union-by-size
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Figure 8.11 Result of an arbitrary union

Figure 8.12 Worst-case tree for N = 16

the size of its tree. Thus, initially the array representation of the tree is all —1s. When a
union is performed, check the sizes; the new size is the sum of the old. Thus, union-by-size
is not at all difficult to implement and requires no extra space. It is also fast, on average.
For virtually all reasonable models, it has been shown that a sequence of M operations
requires O(M) average time if union-by-size is used. This is because when random unions
are performed, generally very small (usually one-element) sets are merged with large sets
throughout the algorithm.

An alternative implementation, which also guarantees that all the trees will have depth
at most O(logN), is union-by-height. We keep track of the height, instead of the size,
of each tree and perform unions by making the shallow tree a subtree of the deeper tree.
This is an easy algorithm, since the height of a tree increases only when two equally deep
trees are joined (and then the height goes up by one). Thus, union-by-height is a trivial
modification of union-by-size. Since heights of zero would not be negative, we actually
store the negative of height, minus an additional 1. Initially, all entries are —1.

Figure 8.13 shows a forest and its implicit representation for both union-by-size and
union-by-height. The code in Figure 8.14 implements union-by-height.
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-1 -1 -1 4 5 4 4 6
0 1 2 3 4 5 6 7
-1 -1 1 4 3 4 4 6
0 1 2 3 4 5 6 7

Figure 8.13 Forest with implicit representation for union-by-size and union-by-height

1 /**

2 * Union two disjoint sets.

3 * For simplicity, we assume rootl and root2 are distinct
4 * and represent set names.

5 * rootl is the root of set 1.

6 * root2 is the root of set 2.

7 */

8 void DisjSets::unionSets( int rootl, int root2 )

9 {

10 if( s[ root2 ] < s[ rootl ] ) // root2 is deeper

11 s[ rootl ] = root2; // Make root2 new root
12 else

13 {

14 if( s[ rootl ] == s[ root2 ] )

15 --s[ rootl ]; // Update height if same
16 s[ root2 ] = rootl; // Make rootl new root
17 }

18 }

Figure 8.14 Code for union-by-height (rank)
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8.5 Path Compression

The union/find algorithm, as described so far, is quite acceptable for most cases. It is
very simple and linear on average for a sequence of M instructions (under all models).
However, the worst case of O(Mlog N) can occur fairly easily and naturally. For instance,
if we put all the sets on a queue and repeatedly dequeue the first two sets and enqueue
the union, the worst case occurs. If there are many more finds than unions, this running
time is worse than that of the quick-find algorithm. Moreover, it should be clear that there
are probably no more improvements possible for the union algorithm. This is based on
the observation that any method to perform the unions will yield the same worst-case
trees, since it must break ties arbitrarily. Therefore, the only way to speed the algorithm
up, without reworking the data structure entirely, is to do something clever on the find
operation.

The clever operation is known as path compression. Path compression is performed
during a find operation and is independent of the strategy used to perform unions. Suppose
the operation is find(x). Then the effect of path compression is that every node on the path
from x to the root has its parent changed to the root. Figure 8.15 shows the effect of path
compression after find(14) on the generic worst tree of Figure 8.12.

The effect of path compression is that with an extra two link changes, nodes 12 and 13
are now one position closer to the root and nodes 14 and 15 are now two positions closer.
Thus, the fast future accesses on these nodes will pay (we hope) for the extra work to do
the path compression.

As the code in Figure 8.16 shows, path compression is a trivial change to the basic find
algorithm. The only change to the find routine (besides the fact that it is no longer a const
member function) is that s[x] is made equal to the value returned by find; thus, after the
root of the set is found recursively, x’s parent link references it. This occurs recursively to
every node on the path to the root, so this implements path compression.

When unions are done arbitrarily, path compression is a good idea, because there is
an abundance of deep nodes and these are brought near the root by path compression.
It has been proven that when path compression is done in this case, a sequence of M

Figure 8.15 An example of path compression
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/**
* Perform a find with path compression.
* Error checks omitted again for simplicity.
* Return the set containing x.
*/
int DisjSets::find( int x )
{
if(s[lx]<0)
return Xx;
else
return s[ x ] = find( s[ x ] );

—_ —
— O O 0 N LW N =

—_
[\]

}

Figure 8.16 Code for disjoint sets find with path compression

operations requires at most O(M log N) time. It is still an open problem to determine what
the average-case behavior is in this situation.

Path compression is perfectly compatible with union-by-size, and thus both routines
can be implemented at the same time. Since doing union-by-size by itself is expected
to execute a sequence of M operations in linear time, it is not clear that the extra pass
involved in path compression is worthwhile on average. Indeed, this problem is still open.
However, as we shall see later, the combination of path compression and a smart union
rule guarantees a very efficient algorithm in all cases.

Path compression is not entirely compatible with union-by-height, because path com-
pression can change the heights of the trees. It is not at all clear how to recompute them
efficiently. The answer is do not! Then the heights stored for each tree become estimated
heights (sometimes known as ranks), but it turns out that union-by-rank (which is what
this has now become) is just as efficient in theory as union-by-size. Furthermore, heights
are updated less often than sizes. As with union-by-size, it is not clear whether path com-
pression is worthwhile on average. What we will show in the next section is that with either
union heuristic, path compression significantly reduces the worst-case running time.

8.6 Worst Case for Union-by-Rank and Path
Compression

When both heuristics are used, the algorithm is almost linear in the worst case. Specifically,
the time required in the worst case is @(Ma(M, N)) (provided M > N), where a(M, N) is
an incredibly slowly growing function that for all intents and purposes is at most 5 for any
problem instance. However, o(M, N) is not a constant, so the running time is not linear.

In the remainder of this section, we first look at some very slow-growing functions, and
then in Sections 8.6.2 to 8.6.4, we establish a bound on the worst case for a sequence of at
most N — 1 unions and M find operations in an N-element universe in which union is
by rank and finds use path compression. The same bound holds if union-by-rank is
replaced with union-by-size.
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8.6.1 Slowly Growing Functions
Consider the recurrence

0 N<1

T(LfND+1  N>1 8.1)

T(N) = {
In this equation, T(N) represents the number of times, starting at N, that we must iteratively
apply f(IN) until we reach 1 (or less). We assume that f(N) is a nicely defined function that
reduces N. Call the solution to the equation f*(N).

We have already encountered this recurrence when analyzing binary search. There,
f(N) = N/2; each step halves N. We know that this can happen at most log N times until
N reaches 1; hence we have f*(N) = log N (we ignore low-order terms, etc.). Observe that
in this case, f*(N) is much less than f(N).

Figure 8.17 shows the solution for T(N) for various f(N). In our case, we are most
interested in f(N) = log N. The solution T(N) = log™ N is known as the iterated logarithm.
The iterated logarithm, which represents the number of times the logarithm needs to be
iteratively applied until we reach one, is a very slowly growing function. Observe that
log"2 = 1,log"4 = 2,1log" 16 = 3, log* 65536 = 4, and log*2°°7%% = 5. But keep in
mind that 26539 is a 20,000-digit number. So while log* N is a growing function, for all
intents and purposes, it is at most 5. But we can still produce even more slowly growing
functions. For instance, if f(N) = log* N, then T(N) = log*™* N. In fact, we can add stars at
will to produce functions that grow slower and slower.

8.6.2 An Analysis by Recursive Decomposition

We now establish a tight bound on the running time of a sequence of M = Q(N) union/find
operations. The unions and finds may occur in any order, but unions are done by rank and
finds are done with path compression.

Loy | oy |
N-1 N—1
N—2 N/2
N—c N/c
N/2 logN
N/c log. N

VN loglogN
logN log" N

log" N log"™* N

log"”* N | log"™* N

Figure 8.17 Different values of the iterated function
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Figure 8.18 A large disjoint set tree (numbers below nodes are ranks)

We begin by establishing two lemmas concerning the properties of the ranks.
Figure 8.18 gives a visual picture of both lemmas.

Lemma 8.1

When executing a sequence of union instructions, a node of rank r > 0 must have at
least one child of rank 0, 1,...,r— 1.

Proof

By induction. The basis + = 1 is clearly true. When a node grows from rank r — 1
to rank r, it obtains a child of rank r — 1. By the inductive hypothesis, it already has
children of ranks 0, 1,...,r — 2, thus establishing the lemma.

The next lemma seems somewhat obvious but is used implicitly in the analysis.

Lemma 8.2
At any point in the union/find algorithm, the ranks of the nodes on a path from the
leaf to a root increase monotonically.

Proof

The lemma is obvious if there is no path compression. If, after path compression, some
node v is a descendant of w, then clearly v must have been a descendant of w when
only unions were considered. Hence the rank of v is less than the rank of w.

Suppose we have two algorithms, A and B. Algorithm A works and computes all the
answers correctly, but algorithm B does not compute correctly, or even produce useful
answers. Suppose, however, that every step in algorithm A can be mapped to an equivalent
step in algorithm B. Then it is easy to see that the running time for algorithm B describes
the running time for algorithm A exactly.

We can use this idea to analyze the running time of the disjoint sets data structure. We
will describe an algorithm B, whose running time is exactly the same as the disjoint sets
structure, and then algorithm C, whose running time is exactly the same as algorithm B.
Thus any bound for algorithm C will be a bound for the disjoint sets data structure.
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Partial Path Compression

Algorithm A is our standard sequence of union-by-rank and find with path compression
operations. We design an algorithm B that will perform the exact same sequence of path
compression operations as algorithm A. In algorithm B, we perform all the unions prior to
any find. Then each find operation in algorithm A is replaced by a partial find operation
in algorithm B. A partial find operation specifies the search item and the node up to which
the path compression is performed. The node that will be used is the node that would have
been the root at the time the matching find was performed in algorithm A.

Figure 8.19 shows that algorithm A and algorithm B will get equivalent trees (forests) at
the end, and it is easy to see that the exact same amount of parent changes are performed
by algorithm A% finds, compared to algorithm B’ partial finds. But algorithm B should
be simpler to analyze, since we have removed the mixing of unions and finds from the
equation. The basic quantity to analyze is the number of parent changes that can occur
in any sequence of partial finds, since all but the top two nodes in any find with path
compression will obtain new parents.

A Recursive Decomposition

What we would like to do next is to divide each tree into two halves: a top half and a
bottom half. We would then like to ensure that the number of partial find operations in
the top half plus the number of partial find operations in the bottom half is exactly the
same as the total number of partial find operations. We would then like to write a formula
for the total path compression cost in the tree in terms of the path compression cost in the
top half plus the path compression cost in the bottom half. Without specifying how we
decide which nodes are in the top half, and which nodes are in the bottom half, we can
look at Figures 8.20, 8.21, and 8.22, to see how most of what we want to do can work
immediately.

In Figure 8.20, the partial find resides entirely in the bottom half. Thus one partial
find in the bottom half corresponds to one original partial find, and the charges can be
recursively assigned to the bottom half.

®
Find (c) Union (b, f)
© @ © O ©
(®) (0 (D) (D)
@ @ ) Union (b, ) ® & ® Partial find (c, b) B ©
© ® @ @ ® @ © O ©®

Figure 8.19 Sequences of union and find operations replaced with equivalent cost of
union and partial find operations
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Figure 8.20 Recursive decomposition, case 1: Partial find is entirely in bottom

TOP
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Figure 8.21 Recursive decomposition, case 2: Partial find is entirely in top

TOP
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Figure 8.22 Recursive decomposition, case 3: Partial find goes from bottom to top
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In Figure 8.21, the partial find resides entirely in the top half. Thus one partial find
in the top half corresponds to one original partial find, and the charges can be recursively
assigned to the top half.

However, we run into lots of trouble when we reach Figure 8.22. Here x is in the
bottom half, and y is in the top half. The path compression would require that all nodes
from x to y%s child acquire y as its parent. For nodes in the top half, that is no problem,
but for nodes in the bottom half this is a deal breaker: Any recursive charges to the bottom
have to keep everything in the bottom. So as Figure 8.23 shows, we can perform the path
compression on the top, but while some nodes in the bottom will need new parents, it is
not clear what to do, because the new parents for those bottom nodes cannot be top nodes,
and the new parents cannot be other bottom nodes.

The only option is to make a loop where these nodes’ parents are themselves and make
sure these parent changes are correctly charged in our accounting. Although this is a new
algorithm because it can no longer be used to generate an identical tree, we don't need
identical trees; we only need to be sure that each original partial find can be mapped into
a new partial find operation and that the charges are identical. Figure 8.24 shows what the
new tree will look like, and so the big remaining issue is the accounting.

Looking at Figure 8.24, we see that the path compression charges from x to y can be
split into three parts. First, there is the path compression from z (the first top node on the
upward path) to y. Clearly those charges are already accounted for recursively. Then there
is the charge from the topmost-bottom node w to z. But that is only one unit, and there can
be at most one of those per partial find operation. In fact, we can do a little better: There
can be at most one of those per partial find operation on the top half. But how do we
account for the parent changes on the path from x to w? One idea would be to argue that
those changes would be exactly the same cost as if there were a partial find from x to w. But
there is a big problem with that argument: It converts an original partial find into a partial
find on the top plus a partial find on the bottom, which means the number of operations,

- AAQ;
Kﬁﬁ

Figure 8.23 Recursive decomposition, case 3: Path compression can be performed on the
top nodes, but the bottom nodes must get new parents; the parents cannot be top parents,
and they cannot be other bottom nodes
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TOP

[\ =
BOTTOM

Figure 8.24 Recursive decomposition, case 3: The bottom node new parents are the
nodes themselves

M, would no longer be the same. Fortunately, there is a simpler argument: Since each node
on the bottom can have its parent set to itself only once, the number of charges are limited
by the number of nodes on the bottom whose parents are also in the bottom (i.e., w is
excluded).

There is one important detail that we must verify. Can we get in trouble on a subsequent
partial find given that our reformulation detaches the nodes between x and w from the path
to y? The answer is no. In the original partial find, suppose any of the nodes between x and
w are involved in a subsequent original partial find. In that case, it will be with one of y’s
ancestors, and when that happens, any of those nodes will be the topmost “bottom node”
in our reformulation. Thus on the subsequent partial find, the original partial find’s parent
change will have a corresponding one unit charge in our reformulation.

We can now proceed with the analysis. Let M be the total number of original partial find
operations. Let M; be the total number of partial find operations performed exclusively on
the top half, and let M}, be the total number of partial find operations performed exclusively
on the bottom half. Let N be the total number of nodes. Let N; be the total number of top-
half nodes, let Nj, be the total number of bottom-half nodes, and let N,,;, be the total
number of non-root bottom nodes (i.e., the number of bottom nodes whose parents are
also bottom nodes prior to any partial finds).

Lemma 8.3
M= M, + Mp,.

Proof

In cases 1 and 3, each original partial find operation is replaced by a partial find on the
top half, and in case 2, it is replaced by a partial find on the bottom half. Thus each
partial find is replaced by exactly one partial find operation on one of the halves.

Our basic idea is that we are going to partition the nodes so that all nodes with rank
s or lower are in the bottom, and the remaining nodes are in the top. The choice of s will
be made later in the proof. The next lemma shows that we can provide a recursive formula
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for the number of parent changes by splitting the charges into the top and bottom groups.
One of the key ideas is that a recursive formula is written not only in terms of M and N,
which would be obvious, but also in terms of the maximum rank in the group.

Lemma 8.4

Let C(M, N, 1) be the number of parent changes for a sequence of M finds with path
compression on N items whose maximum rank is r. Suppose we partition so that all
nodes with rank at s or lower are in the bottom, and the remaining nodes are in the
top. Assuming appropriate initial conditions,

CM,N, 1) < C(M, N, 1) + C(Mp, Ny, s) + My + Ny

Proof

The path compression that is performed in each of the three cases is covered by
CM;, N, 1) + C(Mp, Ny, s). Node w in case 3 is accounted for by M. Finally, all the
other bottom nodes on the path are non-root nodes that can have their parent set to
themselves at most once in the entire sequence of compressions. They are accounted
for by Nyp.

If union-by-rank is used, then by Lemma 8.1, every top node has children of ranks
0,1,...,sprior to the commencement of the partial find operations. Each of those children
are definitely root nodes in the bottom (their parent is a top node). So for each top node,
s+ 2 nodes (the s + 1 children plus the top node itself ) are definitely not included in Nys.
Thus, we can refomulate Lemma 8.4 as follows:

Lemma 8.5

Let C(M, N, 1) be the number of parent changes for a sequence of M finds with path
compression on N items whose maximum rank is . Suppose we partition so that all
nodes with rank at s or lower are in the bottom, and the remaining nodes are in the
top. Assuming appropriate initial conditions,

CM,N,r) < C(M¢,N¢, 1) + C(Mp, Ny, s) + My + N — (s + 2)N;

Proof
Substitute Ny, < N — (s + 2)N; into Lemma 8.4.

If we look at Lemma 8.5, we see that C(M, N, r) is recursively defined in terms of two
smaller instances. Our basic goal at this point is to remove one of these instances by pro-
viding a bound for it. What we would like to do is to remove C(M;, N;, r). Why? Because,
if we do so, what is left is C(Mp, Np, s). In that case, we have a recursive formula in which
tis reduced to s. If s is small enough, we can make use of a variation of Equation (8.1),
namely, that the solution to

0 N<1

T(LfNMD+M  N>1 (8.2)

T(N) = {

is OMM f*(N)). So, let’s start with a simple bound for C(M, N, r):
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Theorem 8.1
CM,N,1) <M+ Nlogr.

Proof
We start with Lemma 8.5:

CM,N,1) < C(M¢,Ni, 1) + C(Mp, Ny, s) + My + N — (s + 2)N; 8.3)

Observe that in the top half, there are only nodes of rank s+ 1,542, ..., r, and thus no
node can have its parent change more than (r—s—2) times. This yields a trivial bound
of Ny(r—s—2) for C(M;, N, r). Thus,

CM,N,1r) < Ni(r —s — 2) + C(Mp, Np,, s) + M; + N — (s + 2)N; (8.4)
Combining terms,

C(M,N,r) < Ni(r —2s —4) + C(Mp,Np,s) + My + N (8.5)
Select s = [r/2]. Thenr —2s — 4 < 0, so

CM,N,1) < C(Mp, Np, [7/2]) + M; + N (8.6)

Equivalently, since according to Lemma 8.3, M = M}, +M; (the proof falls apart without
this),

CM,N, 1) =M < C(Mp, Ny, [1/2]) —Mp + N 8.7
Let DOM,N,r) = C(M,N,r) — M; then
DM, N,r) < DMy, Ny, |r/2]) + N (8.8)
which implies D(M, N, r) < Nlogr. This yields C(M,N,r) < M + Nlogr.

Theorem 8.2
Any sequence of N — 1 unions and M finds with path compression makes at most
M + Nloglog N parent changes during the finds.

Proof
The bound is immediate from Theorem 8.1 since r < logN.

8.6.3 An O(M log*N ) Bound

The bound in Theorem 8.2 is pretty good, but with a little work, we can do even better.
Recall, that a central idea of the recursive decomposition is choosing s to be as small as
possible. But to do this, the other terms must also be small, and as s gets smaller, we would
expect C(M¢, Ny, 1) to get larger. But the bound for C(M;, N, ) used a primitive estimate,
and Theorem 8.1 itself can now be used to give a better estimate for this term. Since the
C(M;, N¢, 1) estimate will now be lower, we will be able to use a lower s.

Theorem 8.3
C(M,N,r) < 2M + Nlog" r.
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Proof
From Lemma 8.5 we have,

CM,N,1) < C(M¢, N, 1) + CMp, Ny, s) + My + N — (s + 2)N; (8.9)
and by Theorem 8.1, C(M;, N, 1) < M; + N¢logr. Thus,

CM,N,1) < My + Nlogr + C(Mp, Np,s) + My + N — (s + 2)N; (8.10)
Rearranging and combining terms yields

CM,N, 1) < C(Mp,Np,s) + 2M; + N — (s — logr 4+ 2)N, (8.11)

So choose s = [logr]. Clearly, this choice implies that (s —logr+2) > 0, and thus we
obtain

CM,N,1) < C(My, Np, logr]) +2M, + N (8.12)
Rearranging as in Theorem 8.1, we obtain
CM,N,1r) —2M < C(Mp, Ny, [logr]) —2M, + N (8.13)
This time, let DIM, N, r) = C(M, N, r) — 2M;, then
DM, N, 1) < D(Mp, Ny, [logr]) + N (8.14)

which implies D(M, N, r) < Nlog* r. This yields C(M, N, r) < 2M + Nlog*r.

8.6.4 An O(M a(M, N) ) Bound

Not surprisingly, we can now use Theorem 8.3 to improve Theorem 8.3:

Theorem 8.4
C(M,N,1) < 3M + Nlog™ r.

Proof
Following the steps in the proof of Theorem 8.3, we have

C(M,N,r) < C(M{, Ny, 1) + C(Mp, Np,s) + My + N — (s + 2)N; (8.15)
and by Theorem 8.3, C(M;, N;, 1) < 2M; + Ny log* r. Thus,

C(M,N,r) < 2M; + Nilog" r + C(Mp, Ny, s) + My + N — (s + 2)N; (8.16)
Rearranging and combining terms yields

C(M,N,r) < C(My,Np,s) + 3M; + N — (s — log" r + 2)N; (8.17)
So choose s = log" r to obtain

C(M,N,1) < C(Myp, Np,log*r) +3M, + N (8.18)
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Rearranging as in Theorems 8.1 and 8.3, we obtain
C(M,N,r) —3M < C(My, Np,log* 1) — 3M}, + N (8.19)
This time, let DM, N, 1) = C(M, N, r) — 3M; then
DM, N, r) < DMy, Np,log" ) + N (8.20)
which implies D(M, N, r) < Nlog™ r. This yields C(M, N, 1) < 3M + Nlog™* r.

Needless to say, we could continue this ad infinitim. Thus with a bit of math, we get a
progression of bounds:

C(M,N,r) < 2M + Nlog* r
C(M,N,r) < 3M + Nlog™ r
C(M,N,r) < 4M + Nlog"™* r
C(M,N,r) < 5M + Nlog™**r
C(M,N,1) < 6M + Nlog™*** r
Each of these bounds would seem to be better than the previous since, after all, the
more *s the slower log™***r grows. However, this ignores the fact that while log™***r is
smaller than log™**r, the 6M term is NOT smaller than the 5M term.
Thus what we would like to do is to optimize the number of *s that are used.
Define «(M, N) to represent the optimal number of *s that will be used. Specifically,
i times

——
a(M,N) = min {i> 1|log ™ (logN) < (M/N)

Then, the running time of the union/find algorithm can be bounded by O(Ma (M, N)).
Theorem 8.5
Any sequence of N — 1 unions and M finds with path compression makes at most
i times
——
(i + DM + Nlog **** (log N)
parent changes during the finds.

Proof
This follows from the above discussion and the fact that r < logN.

Theorem 8.6
Any sequence of N — 1 unions and M finds with path compression makes at most
Ma(M, N) + 2M parent changes during the finds.

Proof
In Theorem 8.5, choose i to be (M, N); thus, we obtain a bound of (i4+1)M+N(M/N),
or Ma(M,N) + 2M.
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8.7 An Application

An example of the use of the union/find data structure is the generation of mazes, such
as the one shown in Figure 8.25. In Figure 8.25, the starting point is the top-left corner,
and the ending point is the bottom-right corner. We can view the maze as a 50-by-88
rectangle of cells in which the top-left cell is connected to the bottom-right cell, and cells
are separated from their neighboring cells via walls.

A simple algorithm to generate the maze is to start with walls everywhere (except for
the entrance and exit). We then continually choose a wall randomly, and knock it down if
the cells that the wall separates are not already connected to each other. If we repeat this
process until the starting and ending cells are connected, then we have a maze. It is actually
better to continue knocking down walls until every cell is reachable from every other cell
(this generates more false leads in the maze).

We illustrate the algorithm with a 5-by-5 maze. Figure 8.26 shows the initial config-
uration. We use the union/find data structure to represent sets of cells that are connected
to each other. Initially, walls are everywhere, and each cell is in its own equivalence
class.

Figure 8.27 shows a later stage of the algorithm, after a few walls have been knocked
down. Suppose, at this stage, the wall that connects cells 8 and 13 is randomly targeted.
Because 8 and 13 are already connected (they are in the same set), we would not remove
the wall, as it would simply trivialize the maze. Suppose that cells 18 and 13 are randomly
targeted next. By performing two find operations, we see that these are in different sets;
thus 18 and 13 are not already connected. Therefore, we knock down the wall that sep-
arates them, as shown in Figure 8.28. Notice that as a result of this operation, the sets

SEaE *m%whgf $Ja§$—_‘rrﬁ'“' Tt Eﬁﬂ
| % *
e e et ]

Figure 8.25 A 50-by-88 maze
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10 11 12 13 14

20 | 21 22 | 23 | 24

{0} {1} {2} {3} {4} {5} {6} {7} (8} {9} (10} {11} {12} {13} {14} {15} {16} {17} {18} {19} {20} {21}
{22} {23} {24}

Figure 8.26 Initial state: all walls up, all cells in their own set

containing 18 and 13 are combined via a union operation. This is because everything that
was connected to 18 is now connected to everything that was connected to 13. At the end
of the algorithm, depicted in Figure 8.29, everything is connected, and we are done.

The running time of the algorithm is dominated by the union/find costs. The size of
the union/find universe is equal to the number of cells. The number of find operations is
proportional to the number of cells, since the number of removed walls is one less than
the number of cells, while with care, we see that there are only about twice the number of
walls as cells in the first place. Thus, if N is the number of cells, since there are two finds
per randomly targeted wall, this gives an estimate of between (roughly) 2N and 4N find
operations throughout the algorithm. Therefore, the algorithm’s running time can be taken
as O(N'log* N), and this algorithm quickly generates a maze.

15 16 17 18 19

20 | 21 22 | 23 | 24

{0, 1} {2} {3} {4,6,7,8,9,13, 14} {5} {10, 11, 15} {12} {16, 17, 18,22} {19} {20} {21} {23} {24}

Figure 8.27 At some point in the algorithm: Several walls down, sets have merged,; if at
this point the wall between 8 and 13 is randomly selected, this wall is not knocked down,
because 8 and 13 are already connected
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10 11 12 13 14

20 | 21 22 | 23 | 24

{0, 1} {2} {3} {4,6,7,8,9,13, 14, 16, 17, 18,22} {5} {10, 11, 15} {12} {19} {20} {21} {23} {24}

Figure 8.28 Wall between squares 18 and 13 is randomly selected in Figure 8.27; this
wall is knocked down, because 18 and 13 are not already connected; their sets are
merged

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

{0,1,2,3,4,5,6,7,8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24}

Figure 8.29 Eventually, 24 walls are knocked down; all elements are in the same set

Summary

We have seen a very simple data structure to maintain disjoint sets. When the union
operation is performed, it does not matter, as far as correctness is concerned, which set
retains its name. A valuable lesson that should be learned here is that it can be very
important to consider the alternatives when a particular step is not totally specified. The
union step is flexible; by taking advantage of this, we are able to get a much more efficient
algorithm.

Path compression is one of the earliest forms of self-adjustment, which we have seen
elsewhere (splay trees, skew heaps). Its use is extremely interesting, especially from a the-
oretical point of view, because it was one of the first examples of a simple algorithm with a
not-so-simple worst-case analysis.



Exercises

Exercises

8.1  Show the result of the following sequence of instructions: union(1,2), union(3,4),
union(3,5), wunion(1,7), wunion(3,6), wunion(8,9), wunion(1,8), wunion(3,10),
union (3,11), union(3,12), union(3,13), union(14,15), union(16,0), union(14,16),
union (1,3), union(1, 14) when the unions are
a. performed arbitrarily
b. performed by height
c. performed by size

8.2 Foreach of the trees in the previous exercise, perform a find with path compression
on the deepest node.

8.3  Write a program to determine the effects of path compression and the various
unioning strategies. Your program should process a long sequence of equivalence
operations using all six of the possible strategies.

8.4  Show that if unions are performed by height, then the depth of any tree is O(log N).

8.5  Suppose f(N) is a nicely defined function that reduces N to a smaller integer. What
is the solution to the recurrence T(N) = J%T(f (N)) + N with appropriate initial
conditions?

8.6 a. Show thatif M = N2, then the running time of M union/find operations is O(M).
b. Show that if M = NlogN, then the running time of M union/find operations is

oM.

*c. Suppose M = O(NloglogN). What is the running time of M union/find
operations?

*d. Suppose M = O(Nlog*N). What is the running time of M union/find
operations?

8.7  Tarjan’s original bound for the union/find algorithm defined
a(M,N) = min{i > 1[{(A (i, [M/N]) > log N)}, where

AL =2 j=1

A, 1) =AG—1,2) i>2

A, j) = AG— 1,AG,j — 1)) ij=2
Here, A(m, n) is one version of the Ackermann function. Are the two definitions
of o asymptotically equivalent?

8.8  Prove that for the mazes generated by the algorithm in Section 8.7, the path from
the starting to ending points is unique.

8.9  Design an algorithm that generates a maze that contains no path from start to finish
but has the property that the removal of a prespecified wall creates a unique path.

*8.10 Suppose we want to add an extra operation, deunion, which undoes the last union
operation that has not been already undone.
a. Show that if we do union-by-height and finds without path compression, then
deunion is easy, and a sequence of M union, find, and deunion operations takes
O(MlogN) time.
b. Why does path compression make deunion hard?
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*c¢. Show how to implement all three operations so that the sequence of M

operations takes O(M log N/loglog N) time.

*8.11 Suppose we want to add an extra operation, remove(x), which removes x from its
current set and places it in its own. Show how to modify the union/find algorithm
so that the running time of a sequence of M union, find, and remove operations is
O(Ma (M, N)).

*8.12  Show that if all of the unions precede the finds, then the disjoint sets algorithm with
path compression requires linear time, even if the unions are done arbitrarily.

**8.13  Prove that if unions are done arbitrarily, but path compression is performed on the
finds, then the worst-case running time is ®(M log N).

*8.14 Prove that if unions are done by size and path compression is performed, the worst-
case running time is O(Ma(M, N)).

8.15 The disjoint set analysis in Section 8.6 can be refined to provide tight bounds for
small N.

a. Show that C(M, N, 0) and C(M, N, 1) are both 0.
b. Show that C(M, N, 2) is at most M.
c. Let r < 8. Choose s = 2 and show that C(M, N, r) is at most M + N.

8.16 Suppose we implement partial path compression on find(i) by making every other
node on the path from i to the root link to its grandparent (where this makes sense).
This is known as path halving.

a. Write a procedure to do this.
b. Prove that if path halving is performed on the finds and either union-by-height
or union-by-size is used, the worst-case running time is O(Ma(M, N)).

8.17 Write a program that generates mazes of arbitrary size. If you are using a sys-
tem with a windowing package, generate a maze similar to that in Figure 8.25.
Otherwise describe a textual representation of the maze (for instance, each line of
output represents a square and has information about which walls are present) and
have your program generate a representation.
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